May  2015, 35(5): 2053-2066. doi: 10.3934/dcds.2015.35.2053

Short-wavelength instabilities of edge waves in stratified water

1. 

Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit No. 6, P.O. Box 1-764, RO-014700 Bucharest, Romania

Received  June 2014 Revised  July 2014 Published  December 2014

In this paper we make a detailed analysis of the short-wavelength instability method for barotropic incompressible fluids. We apply this method to edge waves in stratified water. These waves are unstable to short-wavelength perturbations if their steepness exceeds a specific threshold.
Citation: Delia Ionescu-Kruse. Short-wavelength instabilities of edge waves in stratified water. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2053-2066. doi: 10.3934/dcds.2015.35.2053
References:
[1]

B. J. Bayly, Three-dimensional instabilities in quasi-two dimensional inviscid flows, in, Nonlinear Wave Interactions in Fluids, (1987), 71. Google Scholar

[2]

A. Constantin, On the deep water wave motion,, J. Phys. A, 34 (2001), 1405. doi: 10.1088/0305-4470/34/7/313. Google Scholar

[3]

A. Constantin, Edge waves along a sloping beach,, J. Phys. A, 34 (2001), 9723. doi: 10.1088/0305-4470/34/45/311. Google Scholar

[4]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5. Google Scholar

[5]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, CBMS-NSF Conference Series in Applied Mathematics, (2011). doi: 10.1137/1.9781611971873. Google Scholar

[6]

A. Constantin, An exact solution for equatorially trapped waves,, J. Geophys. Res., 117 (2012). doi: 10.1029/2012JC007879. Google Scholar

[7]

A. Constantin and P. Germain, Instability of some equatorially trapped waves,, J. Geophys. Res.-Oceans, 118 (2013), 2802. doi: 10.1002/jgrc.20219. Google Scholar

[8]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533. doi: 10.1002/cpa.20299. Google Scholar

[9]

M.-L. Dubreil-Jacotin, Sur les ondes de type permanent dans les liquides heterogenes,, Atti Accad. Naz. Lincei, 15 (1932), 814. Google Scholar

[10]

U. Ehrenmark, Oblique wave incidence on a plane beach: The classical problem revisited,, J. Fluid Mech., 368 (1998), 291. doi: 10.1017/S0022112098001888. Google Scholar

[11]

S. Friedlander and A. Lipton-Lifschitz, Localized instabilities in fluids,, in Handbook of Mathematical Fluid Dynamics, 2 (2003), 289. doi: 10.1016/S1874-5792(03)80010-1. Google Scholar

[12]

S. Friedlander and M. M. Vishik, Instability criteria for the flow of an inviscid incompressible fluid,, Phys. Rev. Lett., 66 (1991), 2204. doi: 10.1103/PhysRevLett.66.2204. Google Scholar

[13]

S. Friedlander and M. M. Vishik, Instability criteria for steady flows of a perfect fluid,, Chaos, 2 (1992), 455. doi: 10.1063/1.165888. Google Scholar

[14]

S. Friedlander and V. Yudovich, Instabilities in fluid motion,, Not. Am. Math. Soc., 46 (1999), 1358. Google Scholar

[15]

F. Genoud and D. Henry, Instability of equatorial water waves with an underlying current,, J. Math. Fluid Mech., 16 (2014), 661. doi: 10.1007/s00021-014-0175-4. Google Scholar

[16]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile,, Ann. Phys., 2 (1809), 412. Google Scholar

[17]

D. Henry, The trajectories of particles in deep-water Stokes waves,, Int. Math. Res. Not., (2006). doi: 10.1155/IMRN/2006/23405. Google Scholar

[18]

D. Henry, On Gerstner's water wave,, J. Nonlinear Math. Phys., 15 (2008), 87. doi: 10.2991/jnmp.2008.15.S2.7. Google Scholar

[19]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current,, Eur. J. Mech. B Fluids, 38 (2013), 18. doi: 10.1016/j.euromechflu.2012.10.001. Google Scholar

[20]

D. Henry and O. Mustafa, Existence of solutions for a class of edge wave equations,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1113. doi: 10.3934/dcdsb.2006.6.1113. Google Scholar

[21]

P.A. Howd, A.J. Bowen and R.A. Holman, Edge waves in the presence of strong longshore currents,, J. Geophys. Res., 97 (1992), 11357. doi: 10.1029/92JC00858. Google Scholar

[22]

D. Ionescu-Kruse, Instability of edge waves along a sloping beach,, J. Diff. Eqs., 256 (2014), 3999. doi: 10.1016/j.jde.2014.03.009. Google Scholar

[23]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves,, Cambridge Univeristy Press, (1997). doi: 10.1017/CBO9780511624056. Google Scholar

[24]

R. S. Johnson, Edge waves: Theories past and present,, Phil. Trans. R. Soc. A, 365 (2007), 2359. doi: 10.1098/rsta.2007.2013. Google Scholar

[25]

D. D. Joseph, Stability of Fluid Motions I,, Springer Verlag, (1976). Google Scholar

[26]

S. Leblanc, Local stability of Gerstner's waves,, J. Fluid Mech., 506 (2004), 245. doi: 10.1017/S0022112004008444. Google Scholar

[27]

N. R. Lebovitz and A. Lifschitz, Short-wavelength instabilities of Riemann ellipsoids,, Phil. Trans. R. Soc. Lond. A, 354 (1996), 927. doi: 10.1098/rsta.1996.0037. Google Scholar

[28]

A. Lifschitz, Short wavelength instabilities of incompressible three-dimensional flows and generation of vorticity,, Phys. Lett. A, 157 (1991), 481. doi: 10.1016/0375-9601(91)91023-7. Google Scholar

[29]

A. Lifschitz, On the instability of certain motions of an ideal incompressible fluid,, Advances Appl. Math., 15 (1994), 404. doi: 10.1006/aama.1994.1017. Google Scholar

[30]

A. Lifschitz and E. Hameiri, Local stability conditions in fluid dynamics,, Phys. Fluids, 3 (1991), 2644. doi: 10.1063/1.858153. Google Scholar

[31]

A.-V. Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach,, J. Phys. A: Math. Theor., 45 (2012). doi: 10.1088/1751-8113/45/36/365501. Google Scholar

[32]

E. Mollo-Christensen, Allowable discontinuities in a Gerstner wave,, Phys. Fluids, 25 (1982), 586. doi: 10.1063/1.863802. Google Scholar

[33]

R. Stuhlmeier, On edge waves in stratified water along a sloping beach,, J. Nonlinear Math. Phys., 18 (2011), 127. doi: 10.1142/S1402925111001210. Google Scholar

[34]

G. B. Whitham, Lecture on Wave Propagation,, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, (1979). Google Scholar

[35]

C. S. Yih, Note on edge waves in a stratified fluid,, J. Fluid Mech., 24 (1966), 765. doi: 10.1017/S0022112066000983. Google Scholar

[36]

C. S. Yih, Stratified flows,, Ann. Rev. Fluid Mech., 1 (1969), 73. doi: 10.1146/annurev.fl.01.010169.000445. Google Scholar

show all references

References:
[1]

B. J. Bayly, Three-dimensional instabilities in quasi-two dimensional inviscid flows, in, Nonlinear Wave Interactions in Fluids, (1987), 71. Google Scholar

[2]

A. Constantin, On the deep water wave motion,, J. Phys. A, 34 (2001), 1405. doi: 10.1088/0305-4470/34/7/313. Google Scholar

[3]

A. Constantin, Edge waves along a sloping beach,, J. Phys. A, 34 (2001), 9723. doi: 10.1088/0305-4470/34/45/311. Google Scholar

[4]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5. Google Scholar

[5]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, CBMS-NSF Conference Series in Applied Mathematics, (2011). doi: 10.1137/1.9781611971873. Google Scholar

[6]

A. Constantin, An exact solution for equatorially trapped waves,, J. Geophys. Res., 117 (2012). doi: 10.1029/2012JC007879. Google Scholar

[7]

A. Constantin and P. Germain, Instability of some equatorially trapped waves,, J. Geophys. Res.-Oceans, 118 (2013), 2802. doi: 10.1002/jgrc.20219. Google Scholar

[8]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave,, Comm. Pure Appl. Math., 63 (2010), 533. doi: 10.1002/cpa.20299. Google Scholar

[9]

M.-L. Dubreil-Jacotin, Sur les ondes de type permanent dans les liquides heterogenes,, Atti Accad. Naz. Lincei, 15 (1932), 814. Google Scholar

[10]

U. Ehrenmark, Oblique wave incidence on a plane beach: The classical problem revisited,, J. Fluid Mech., 368 (1998), 291. doi: 10.1017/S0022112098001888. Google Scholar

[11]

S. Friedlander and A. Lipton-Lifschitz, Localized instabilities in fluids,, in Handbook of Mathematical Fluid Dynamics, 2 (2003), 289. doi: 10.1016/S1874-5792(03)80010-1. Google Scholar

[12]

S. Friedlander and M. M. Vishik, Instability criteria for the flow of an inviscid incompressible fluid,, Phys. Rev. Lett., 66 (1991), 2204. doi: 10.1103/PhysRevLett.66.2204. Google Scholar

[13]

S. Friedlander and M. M. Vishik, Instability criteria for steady flows of a perfect fluid,, Chaos, 2 (1992), 455. doi: 10.1063/1.165888. Google Scholar

[14]

S. Friedlander and V. Yudovich, Instabilities in fluid motion,, Not. Am. Math. Soc., 46 (1999), 1358. Google Scholar

[15]

F. Genoud and D. Henry, Instability of equatorial water waves with an underlying current,, J. Math. Fluid Mech., 16 (2014), 661. doi: 10.1007/s00021-014-0175-4. Google Scholar

[16]

F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile,, Ann. Phys., 2 (1809), 412. Google Scholar

[17]

D. Henry, The trajectories of particles in deep-water Stokes waves,, Int. Math. Res. Not., (2006). doi: 10.1155/IMRN/2006/23405. Google Scholar

[18]

D. Henry, On Gerstner's water wave,, J. Nonlinear Math. Phys., 15 (2008), 87. doi: 10.2991/jnmp.2008.15.S2.7. Google Scholar

[19]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current,, Eur. J. Mech. B Fluids, 38 (2013), 18. doi: 10.1016/j.euromechflu.2012.10.001. Google Scholar

[20]

D. Henry and O. Mustafa, Existence of solutions for a class of edge wave equations,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1113. doi: 10.3934/dcdsb.2006.6.1113. Google Scholar

[21]

P.A. Howd, A.J. Bowen and R.A. Holman, Edge waves in the presence of strong longshore currents,, J. Geophys. Res., 97 (1992), 11357. doi: 10.1029/92JC00858. Google Scholar

[22]

D. Ionescu-Kruse, Instability of edge waves along a sloping beach,, J. Diff. Eqs., 256 (2014), 3999. doi: 10.1016/j.jde.2014.03.009. Google Scholar

[23]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves,, Cambridge Univeristy Press, (1997). doi: 10.1017/CBO9780511624056. Google Scholar

[24]

R. S. Johnson, Edge waves: Theories past and present,, Phil. Trans. R. Soc. A, 365 (2007), 2359. doi: 10.1098/rsta.2007.2013. Google Scholar

[25]

D. D. Joseph, Stability of Fluid Motions I,, Springer Verlag, (1976). Google Scholar

[26]

S. Leblanc, Local stability of Gerstner's waves,, J. Fluid Mech., 506 (2004), 245. doi: 10.1017/S0022112004008444. Google Scholar

[27]

N. R. Lebovitz and A. Lifschitz, Short-wavelength instabilities of Riemann ellipsoids,, Phil. Trans. R. Soc. Lond. A, 354 (1996), 927. doi: 10.1098/rsta.1996.0037. Google Scholar

[28]

A. Lifschitz, Short wavelength instabilities of incompressible three-dimensional flows and generation of vorticity,, Phys. Lett. A, 157 (1991), 481. doi: 10.1016/0375-9601(91)91023-7. Google Scholar

[29]

A. Lifschitz, On the instability of certain motions of an ideal incompressible fluid,, Advances Appl. Math., 15 (1994), 404. doi: 10.1006/aama.1994.1017. Google Scholar

[30]

A. Lifschitz and E. Hameiri, Local stability conditions in fluid dynamics,, Phys. Fluids, 3 (1991), 2644. doi: 10.1063/1.858153. Google Scholar

[31]

A.-V. Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach,, J. Phys. A: Math. Theor., 45 (2012). doi: 10.1088/1751-8113/45/36/365501. Google Scholar

[32]

E. Mollo-Christensen, Allowable discontinuities in a Gerstner wave,, Phys. Fluids, 25 (1982), 586. doi: 10.1063/1.863802. Google Scholar

[33]

R. Stuhlmeier, On edge waves in stratified water along a sloping beach,, J. Nonlinear Math. Phys., 18 (2011), 127. doi: 10.1142/S1402925111001210. Google Scholar

[34]

G. B. Whitham, Lecture on Wave Propagation,, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, (1979). Google Scholar

[35]

C. S. Yih, Note on edge waves in a stratified fluid,, J. Fluid Mech., 24 (1966), 765. doi: 10.1017/S0022112066000983. Google Scholar

[36]

C. S. Yih, Stratified flows,, Ann. Rev. Fluid Mech., 1 (1969), 73. doi: 10.1146/annurev.fl.01.010169.000445. Google Scholar

[1]

Chia-Chun Hsu, Hsun-Jung Cho, Shu-Cherng Fang. Solving routing and wavelength assignment problem with maximum edge-disjoint paths. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1065-1084. doi: 10.3934/jimo.2016062

[2]

M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121

[3]

Orlando Lopes. A linearized instability result for solitary waves. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 115-119. doi: 10.3934/dcds.2002.8.115

[4]

Alexander Sakhnovich. Dynamical canonical systems and their explicit solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1679-1689. doi: 10.3934/dcds.2017069

[5]

David Henry, Hung-Chu Hsu. Instability of equatorial water waves in the $f-$plane. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 909-916. doi: 10.3934/dcds.2015.35.909

[6]

Jifeng Chu, Delia Ionescu-Kruse, Yanjuan Yang. Exact solution and instability for geophysical waves at arbitrary latitude. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4399-4414. doi: 10.3934/dcds.2019178

[7]

Sergey V. Dmitriev, Asiya A. Nazarova, Anatoliy I. Pshenichnyuk, Albert M. Iskandarov. Dynamics of edge dislocation clusters interacting with running acoustic waves. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1079-1094. doi: 10.3934/dcdss.2011.4.1079

[8]

Guy Bouchitté, Ben Schweizer. Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings. Networks & Heterogeneous Media, 2013, 8 (4) : 857-878. doi: 10.3934/nhm.2013.8.857

[9]

David Henry, Octavian G. Mustafa. Existence of solutions for a class of edge wave equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1113-1119. doi: 10.3934/dcdsb.2006.6.1113

[10]

Wouter Rogiest, Dieter Fiems, Koenraad Laevens, Herwig Bruneel. Exact performance analysis of a single-wavelength optical buffer with correlated inter-arrival times. Journal of Industrial & Management Optimization, 2010, 6 (3) : 569-585. doi: 10.3934/jimo.2010.6.569

[11]

Giuseppe Maria Coclite, Lorenzo di Ruvo. Discontinuous solutions for the generalized short pulse equation. Evolution Equations & Control Theory, 2019, 8 (4) : 737-753. doi: 10.3934/eect.2019036

[12]

Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756

[13]

Shujuan Lü, Zeting Liu, Zhaosheng Feng. Hermite spectral method for Long-Short wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 941-964. doi: 10.3934/dcdsb.2018255

[14]

Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147

[15]

Liu Rui. The explicit nonlinear wave solutions of the generalized $b$-equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1029-1047. doi: 10.3934/cpaa.2013.12.1029

[16]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[17]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[18]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[19]

Frédéric Rousset, Nikolay Tzvetkov. On the transverse instability of one dimensional capillary-gravity waves. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 859-872. doi: 10.3934/dcdsb.2010.13.859

[20]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]