Citation: |
[1] |
C. Caseante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalities, Potential Anal., 16 (2002), 347-372.doi: 10.1023/A:1014845728367. |
[2] |
H. Chen and Z. Lü, The properties of positive solutions to an integral system involving Wolff potential, Discrete Contin. Dyn. Syst., 34 (2014), 1879-1904.doi: 10.3934/dcds.2014.34.1879. |
[3] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8. |
[4] |
W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093.doi: 10.3934/dcds.2011.30.1083. |
[5] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.doi: 10.1002/cpa.20116. |
[6] |
Y. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents, J. Differential Equations, 246 (2009), 216-234.doi: 10.1016/j.jde.2008.06.027. |
[7] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.doi: 10.1002/cpa.3160340406. |
[8] |
Z. Guo and J. Wei, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents, Discrete Contin. Dyn. Syst., 34 (2014), 2561-2580.doi: 10.3934/dcds.2014.34.2561. |
[9] |
L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenobel), 33 (1983), 161-187.doi: 10.5802/aif.944. |
[10] |
T. Kilpelaiinen, T. Kuusi and A. Tuhola-Kujanpaa, Superharmonic functions are locally renormalized solutions, Ann. Inst. H. Poincare Analyse Non Lineaire, 28 (2011), 775-795.doi: 10.1016/j.anihpc.2011.03.004. |
[11] |
T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Seuola Norm. Sup. Pisa, Cl. Sci., 19 (1992), 591-613. |
[12] |
T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793. |
[13] |
N. Kawano, E. Yanagida and S. Yotsutani, Structure theorems for positive radial solutions to div$(|Du|^{m-2} Du)+K(|x|)u^q=0$ in $R^n$, J. Math. Soc. Japan, 45 (1993), 719-742.doi: 10.2969/jmsj/04540719. |
[14] |
D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J., 111 (2002), 1-49.doi: 10.1215/S0012-7094-02-11111-9. |
[15] |
Y. Lei, Decay rates for solutions of an integral system of Wolff type, Potential Anal., 35 (2011), 387-402.doi: 10.1007/s11118-010-9218-5. |
[16] |
Y. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35 (2015), 1039-1057.doi: 10.3934/dcds.2015.35.1039. |
[17] |
Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system, J. Differential Equations, 252 (2012), 2739-2758.doi: 10.1016/j.jde.2011.10.009. |
[18] |
Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system, Calc. Var. Partial Differential Equations, 45 (2012), 43-61.doi: 10.1007/s00526-011-0450-7. |
[19] |
Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.doi: 10.4171/JEMS/6. |
[20] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.doi: 10.2307/2007032. |
[21] |
T. Lukkari, F.-Y. Maeda and N. Marola, Wolff potential estimates for elliptic equations with nonstandard growth and applications, Forum. Math., 22 (2010), 1061-1087.doi: 10.1515/forum.2010.057. |
[22] |
C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011), 2676-2699.doi: 10.1016/j.aim.2010.07.020. |
[23] |
J. Maly, Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals, Manuscripta Math., 110 (2003), 513-525.doi: 10.1007/s00229-003-0358-4. |
[24] |
G. Mingione, Gradient potential estimates, J. Eur. Math. Soc., 13 (2011), 459-486.doi: 10.4171/JEMS/258. |
[25] |
N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math., 168 (2008), 859-914.doi: 10.4007/annals.2008.168.859. |
[26] |
S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials, J. Funct. Anal., 263 (2012), 3857-3882.doi: 10.1016/j.jfa.2012.09.012. |
[27] |
X. Xu, Exact solution of nonlinear conformally invarient integral equations in $R^3$, Adv. Math., 194 (2005), 485-503.doi: 10.1016/j.aim.2004.07.004. |
[28] |
X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95-109.doi: 10.1016/j.jfa.2007.03.005. |
[29] |
X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var. Partial Differential Equations, 46 (2013), 75-95.doi: 10.1007/s00526-011-0474-z. |