\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Wolff type potential estimates and application to nonlinear equations with negative exponents

Abstract Related Papers Cited by
  • In this paper, we are concerned with the positive continuous entire solutions of the Wolff type integral equation $$ u(x)=c(x)W_{\beta,\gamma}(u^{-p})(x), \quad u>0 ~in~ R^n, $$ where $n \geq 1$, $p>0$, $\gamma>1$, $\beta>0$ and $\beta\gamma \neq n$. In addition, $c(x)$ is a double bounded function. Such an integral equation is related to the study of the conformal geometry and nonlinear PDEs, such as $\gamma$-Laplace equations and $k$-Hessian equations with negative exponents. By some Wolff type potential integral estimates, we obtain the asymptotic rates and the integrability of positive solutions, and discuss the existence and nonexistence results of the radial solutions.
    Mathematics Subject Classification: 35J60, 35J92, 45G05, 45M05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Caseante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalities, Potential Anal., 16 (2002), 347-372.doi: 10.1023/A:1014845728367.

    [2]

    H. Chen and Z. Lü, The properties of positive solutions to an integral system involving Wolff potential, Discrete Contin. Dyn. Syst., 34 (2014), 1879-1904.doi: 10.3934/dcds.2014.34.1879.

    [3]

    W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8.

    [4]

    W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093.doi: 10.3934/dcds.2011.30.1083.

    [5]

    W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.doi: 10.1002/cpa.20116.

    [6]

    Y. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents, J. Differential Equations, 246 (2009), 216-234.doi: 10.1016/j.jde.2008.06.027.

    [7]

    B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.doi: 10.1002/cpa.3160340406.

    [8]

    Z. Guo and J. Wei, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents, Discrete Contin. Dyn. Syst., 34 (2014), 2561-2580.doi: 10.3934/dcds.2014.34.2561.

    [9]

    L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenobel), 33 (1983), 161-187.doi: 10.5802/aif.944.

    [10]

    T. Kilpelaiinen, T. Kuusi and A. Tuhola-Kujanpaa, Superharmonic functions are locally renormalized solutions, Ann. Inst. H. Poincare Analyse Non Lineaire, 28 (2011), 775-795.doi: 10.1016/j.anihpc.2011.03.004.

    [11]

    T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Seuola Norm. Sup. Pisa, Cl. Sci., 19 (1992), 591-613.

    [12]

    T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793.

    [13]

    N. Kawano, E. Yanagida and S. Yotsutani, Structure theorems for positive radial solutions to div$(|Du|^{m-2} Du)+K(|x|)u^q=0$ in $R^n$, J. Math. Soc. Japan, 45 (1993), 719-742.doi: 10.2969/jmsj/04540719.

    [14]

    D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J., 111 (2002), 1-49.doi: 10.1215/S0012-7094-02-11111-9.

    [15]

    Y. Lei, Decay rates for solutions of an integral system of Wolff type, Potential Anal., 35 (2011), 387-402.doi: 10.1007/s11118-010-9218-5.

    [16]

    Y. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35 (2015), 1039-1057.doi: 10.3934/dcds.2015.35.1039.

    [17]

    Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system, J. Differential Equations, 252 (2012), 2739-2758.doi: 10.1016/j.jde.2011.10.009.

    [18]

    Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system, Calc. Var. Partial Differential Equations, 45 (2012), 43-61.doi: 10.1007/s00526-011-0450-7.

    [19]

    Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.doi: 10.4171/JEMS/6.

    [20]

    E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.doi: 10.2307/2007032.

    [21]

    T. Lukkari, F.-Y. Maeda and N. Marola, Wolff potential estimates for elliptic equations with nonstandard growth and applications, Forum. Math., 22 (2010), 1061-1087.doi: 10.1515/forum.2010.057.

    [22]

    C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011), 2676-2699.doi: 10.1016/j.aim.2010.07.020.

    [23]

    J. Maly, Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals, Manuscripta Math., 110 (2003), 513-525.doi: 10.1007/s00229-003-0358-4.

    [24]

    G. Mingione, Gradient potential estimates, J. Eur. Math. Soc., 13 (2011), 459-486.doi: 10.4171/JEMS/258.

    [25]

    N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math., 168 (2008), 859-914.doi: 10.4007/annals.2008.168.859.

    [26]

    S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials, J. Funct. Anal., 263 (2012), 3857-3882.doi: 10.1016/j.jfa.2012.09.012.

    [27]

    X. Xu, Exact solution of nonlinear conformally invarient integral equations in $R^3$, Adv. Math., 194 (2005), 485-503.doi: 10.1016/j.aim.2004.07.004.

    [28]

    X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95-109.doi: 10.1016/j.jfa.2007.03.005.

    [29]

    X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var. Partial Differential Equations, 46 (2013), 75-95.doi: 10.1007/s00526-011-0474-z.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(151) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return