May  2015, 35(5): 2067-2078. doi: 10.3934/dcds.2015.35.2067

Wolff type potential estimates and application to nonlinear equations with negative exponents

1. 

Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023

Received  December 2013 Revised  September 2014 Published  December 2014

In this paper, we are concerned with the positive continuous entire solutions of the Wolff type integral equation $$ u(x)=c(x)W_{\beta,\gamma}(u^{-p})(x), \quad u>0 ~in~ R^n, $$ where $n \geq 1$, $p>0$, $\gamma>1$, $\beta>0$ and $\beta\gamma \neq n$. In addition, $c(x)$ is a double bounded function. Such an integral equation is related to the study of the conformal geometry and nonlinear PDEs, such as $\gamma$-Laplace equations and $k$-Hessian equations with negative exponents. By some Wolff type potential integral estimates, we obtain the asymptotic rates and the integrability of positive solutions, and discuss the existence and nonexistence results of the radial solutions.
Citation: Yutian Lei. Wolff type potential estimates and application to nonlinear equations with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2067-2078. doi: 10.3934/dcds.2015.35.2067
References:
[1]

C. Caseante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalities,, Potential Anal., 16 (2002), 347.  doi: 10.1023/A:1014845728367.  Google Scholar

[2]

H. Chen and Z. Lü, The properties of positive solutions to an integral system involving Wolff potential,, Discrete Contin. Dyn. Syst., 34 (2014), 1879.  doi: 10.3934/dcds.2014.34.1879.  Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[5]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[6]

Y. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents,, J. Differential Equations, 246 (2009), 216.  doi: 10.1016/j.jde.2008.06.027.  Google Scholar

[7]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar

[8]

Z. Guo and J. Wei, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents,, Discrete Contin. Dyn. Syst., 34 (2014), 2561.  doi: 10.3934/dcds.2014.34.2561.  Google Scholar

[9]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenobel), 33 (1983), 161.  doi: 10.5802/aif.944.  Google Scholar

[10]

T. Kilpelaiinen, T. Kuusi and A. Tuhola-Kujanpaa, Superharmonic functions are locally renormalized solutions,, Ann. Inst. H. Poincare Analyse Non Lineaire, 28 (2011), 775.  doi: 10.1016/j.anihpc.2011.03.004.  Google Scholar

[11]

T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Seuola Norm. Sup. Pisa, 19 (1992), 591.   Google Scholar

[12]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[13]

N. Kawano, E. Yanagida and S. Yotsutani, Structure theorems for positive radial solutions to div$(|Du|^{m-2} Du)+K(|x|)u^q=0$ in $R^n$,, J. Math. Soc. Japan, 45 (1993), 719.  doi: 10.2969/jmsj/04540719.  Google Scholar

[14]

D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.  doi: 10.1215/S0012-7094-02-11111-9.  Google Scholar

[15]

Y. Lei, Decay rates for solutions of an integral system of Wolff type,, Potential Anal., 35 (2011), 387.  doi: 10.1007/s11118-010-9218-5.  Google Scholar

[16]

Y. Lei, On the integral systems with negative exponents,, Discrete Contin. Dyn. Syst., 35 (2015), 1039.  doi: 10.3934/dcds.2015.35.1039.  Google Scholar

[17]

Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system,, J. Differential Equations, 252 (2012), 2739.  doi: 10.1016/j.jde.2011.10.009.  Google Scholar

[18]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43.  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[19]

Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[20]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[21]

T. Lukkari, F.-Y. Maeda and N. Marola, Wolff potential estimates for elliptic equations with nonstandard growth and applications,, Forum. Math., 22 (2010), 1061.  doi: 10.1515/forum.2010.057.  Google Scholar

[22]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Adv. Math., 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[23]

J. Maly, Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513.  doi: 10.1007/s00229-003-0358-4.  Google Scholar

[24]

G. Mingione, Gradient potential estimates,, J. Eur. Math. Soc., 13 (2011), 459.  doi: 10.4171/JEMS/258.  Google Scholar

[25]

N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[26]

S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials,, J. Funct. Anal., 263 (2012), 3857.  doi: 10.1016/j.jfa.2012.09.012.  Google Scholar

[27]

X. Xu, Exact solution of nonlinear conformally invarient integral equations in $R^3$,, Adv. Math., 194 (2005), 485.  doi: 10.1016/j.aim.2004.07.004.  Google Scholar

[28]

X. Xu, Uniqueness theorem for integral equations and its application,, J. Funct. Anal., 247 (2007), 95.  doi: 10.1016/j.jfa.2007.03.005.  Google Scholar

[29]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. Partial Differential Equations, 46 (2013), 75.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

show all references

References:
[1]

C. Caseante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalities,, Potential Anal., 16 (2002), 347.  doi: 10.1023/A:1014845728367.  Google Scholar

[2]

H. Chen and Z. Lü, The properties of positive solutions to an integral system involving Wolff potential,, Discrete Contin. Dyn. Syst., 34 (2014), 1879.  doi: 10.3934/dcds.2014.34.1879.  Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083.  doi: 10.3934/dcds.2011.30.1083.  Google Scholar

[5]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[6]

Y. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents,, J. Differential Equations, 246 (2009), 216.  doi: 10.1016/j.jde.2008.06.027.  Google Scholar

[7]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar

[8]

Z. Guo and J. Wei, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents,, Discrete Contin. Dyn. Syst., 34 (2014), 2561.  doi: 10.3934/dcds.2014.34.2561.  Google Scholar

[9]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenobel), 33 (1983), 161.  doi: 10.5802/aif.944.  Google Scholar

[10]

T. Kilpelaiinen, T. Kuusi and A. Tuhola-Kujanpaa, Superharmonic functions are locally renormalized solutions,, Ann. Inst. H. Poincare Analyse Non Lineaire, 28 (2011), 775.  doi: 10.1016/j.anihpc.2011.03.004.  Google Scholar

[11]

T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Seuola Norm. Sup. Pisa, 19 (1992), 591.   Google Scholar

[12]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[13]

N. Kawano, E. Yanagida and S. Yotsutani, Structure theorems for positive radial solutions to div$(|Du|^{m-2} Du)+K(|x|)u^q=0$ in $R^n$,, J. Math. Soc. Japan, 45 (1993), 719.  doi: 10.2969/jmsj/04540719.  Google Scholar

[14]

D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.  doi: 10.1215/S0012-7094-02-11111-9.  Google Scholar

[15]

Y. Lei, Decay rates for solutions of an integral system of Wolff type,, Potential Anal., 35 (2011), 387.  doi: 10.1007/s11118-010-9218-5.  Google Scholar

[16]

Y. Lei, On the integral systems with negative exponents,, Discrete Contin. Dyn. Syst., 35 (2015), 1039.  doi: 10.3934/dcds.2015.35.1039.  Google Scholar

[17]

Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system,, J. Differential Equations, 252 (2012), 2739.  doi: 10.1016/j.jde.2011.10.009.  Google Scholar

[18]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43.  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[19]

Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[20]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349.  doi: 10.2307/2007032.  Google Scholar

[21]

T. Lukkari, F.-Y. Maeda and N. Marola, Wolff potential estimates for elliptic equations with nonstandard growth and applications,, Forum. Math., 22 (2010), 1061.  doi: 10.1515/forum.2010.057.  Google Scholar

[22]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Adv. Math., 226 (2011), 2676.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[23]

J. Maly, Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals,, Manuscripta Math., 110 (2003), 513.  doi: 10.1007/s00229-003-0358-4.  Google Scholar

[24]

G. Mingione, Gradient potential estimates,, J. Eur. Math. Soc., 13 (2011), 459.  doi: 10.4171/JEMS/258.  Google Scholar

[25]

N. Phuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[26]

S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials,, J. Funct. Anal., 263 (2012), 3857.  doi: 10.1016/j.jfa.2012.09.012.  Google Scholar

[27]

X. Xu, Exact solution of nonlinear conformally invarient integral equations in $R^3$,, Adv. Math., 194 (2005), 485.  doi: 10.1016/j.aim.2004.07.004.  Google Scholar

[28]

X. Xu, Uniqueness theorem for integral equations and its application,, J. Funct. Anal., 247 (2007), 95.  doi: 10.1016/j.jfa.2007.03.005.  Google Scholar

[29]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. Partial Differential Equations, 46 (2013), 75.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

[1]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[2]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[3]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[4]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[9]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[10]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[11]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[12]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[17]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

[18]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[19]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[20]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]