May  2015, 35(5): 2079-2098. doi: 10.3934/dcds.2015.35.2079

Projection methods and discrete gradient methods for preserving first integrals of ODEs

1. 

Department of Physics, University of Otago, PO Box 56, Dunedin 9054

2. 

Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086, Australia

3. 

Department of Mathematics, Washington University in St. Louis, Campus Box 1146, One Brookings Drive, St. Louis, Missouri 63130-4899

4. 

Department of Mathematics, University of Bergen, P.O. Box 7800, N-5020 Bergen

Received  May 2014 Revised  September 2014 Published  December 2014

In this paper we study linear projection methods for approximating the solution and simultaneously preserving first integrals of autonomous ordinary differential equations. We show that each (linear) projection method is equivalent to a class of discrete gradient methods, in both single and multiple first integral cases, and known results for discrete gradient methods also apply to projection methods. Thus we prove that in the single first integral case, under certain mild conditions, the numerical solution for a projection method exists and is locally unique, and preserves the order of accuracy of the underlying method. Our results allow considerable freedom for the choice of projection direction and do not have a time step restriction close to critical points.
Citation: Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079
References:
[1]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations,, $2^{nd}$ edition, (2008).  doi: 10.1002/9780470753767.  Google Scholar

[2]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients,, J. Phys. A, 44 (2011).  doi: 10.1088/1751-8113/44/30/305205.  Google Scholar

[3]

R. W. R. Darling, Differential Forms and Connections,, Cambridge University Press, (1994).  doi: 10.1017/CBO9780511805110.  Google Scholar

[4]

W. Gautschi, Numerical Analysis. An Introduction,, Birkhäuser, (1997).   Google Scholar

[5]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Science, 6 (1996), 449.  doi: 10.1007/BF02440162.  Google Scholar

[6]

V. Grimm and G. R. W. Quispel, Geometric integration methods that preserve Lyapunov functions,, BIT, 45 (2005), 709.  doi: 10.1007/s10543-005-0034-z.  Google Scholar

[7]

W. Greub, Multilinear Algebra,, $2^{nd}$ edition, (1978).   Google Scholar

[8]

E. Hairer, Symmetric projection methods for differential equations on manifolds,, BIT, 40 (2000), 726.  doi: 10.1023/A:1022344502818.  Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations,, Springer Series in Computational Mathematics, 31 (2006).   Google Scholar

[10]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems,, Springer Series in Computational Mathematics, 8 (1993).   Google Scholar

[11]

T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients,, J. Comput. Phys., 76 (1988), 85.  doi: 10.1016/0021-9991(88)90132-5.  Google Scholar

[12]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021.  doi: 10.1098/rsta.1999.0363.  Google Scholar

[13]

C. Meyer, Matrix Analysis and Applied Linear Algebra,, Society for Industrial and Applied Mathematics (SIAM), (2000).  doi: 10.1137/1.9780898719512.  Google Scholar

[14]

R. A. Norton and G. R. W. Quispel, Discrete gradient methods for preserving a first integral of an ordinary differential equation,, Discret. Contin. Dyn. S., 34 (2014), 1147.  doi: 10.3934/dcds.2014.34.1147.  Google Scholar

[15]

J. M. Ortega, The Newton-Kantorovich theorem,, Amer. Math. Monthly, 75 (1968), 658.  doi: 10.2307/2313800.  Google Scholar

[16]

M. Papi, On the domain of the implicit function and applications,, J. Inequal. Appl., 2005 (2005), 221.  doi: 10.1155/JIA.2005.221.  Google Scholar

[17]

G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral,, Physics Letters. A, 218 (1996), 223.  doi: 10.1016/0375-9601(96)00403-3.  Google Scholar

[18]

G. R. W. Quispel and C. Dyt, Solving ODE's numerically while preserving symmetries, Hamiltonian structure, phase space volume, or first integrals,, in Proceedings of the 15th IMACS World Congress (ed. A. Sydow), 2 (1997), 601.   Google Scholar

[19]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/4/045206.  Google Scholar

[20]

G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral,, J. Phys. A, 29 (1996).  doi: 10.1088/0305-4470/29/13/006.  Google Scholar

[21]

J. C. Simo, N. Tarnow and K. K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics,, Comput. Methods Appl. Mech. Engrg., 100 (1992), 63.  doi: 10.1016/0045-7825(92)90115-Z.  Google Scholar

[22]

L. N. Trefethen and D. Bau III, Numerical Linear Algebra,, Society for Industrial and Applied Mathematics (SIAM), (1997).  doi: 10.1137/1.9780898719574.  Google Scholar

[23]

G. Zhong and J. E. Marsden, Lie-Poisson Hamiltonian-Jacobi theory and Lie-Poisson integrators,, Physics Letters A, 133 (1988), 134.  doi: 10.1016/0375-9601(88)90773-6.  Google Scholar

show all references

References:
[1]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations,, $2^{nd}$ edition, (2008).  doi: 10.1002/9780470753767.  Google Scholar

[2]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients,, J. Phys. A, 44 (2011).  doi: 10.1088/1751-8113/44/30/305205.  Google Scholar

[3]

R. W. R. Darling, Differential Forms and Connections,, Cambridge University Press, (1994).  doi: 10.1017/CBO9780511805110.  Google Scholar

[4]

W. Gautschi, Numerical Analysis. An Introduction,, Birkhäuser, (1997).   Google Scholar

[5]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Science, 6 (1996), 449.  doi: 10.1007/BF02440162.  Google Scholar

[6]

V. Grimm and G. R. W. Quispel, Geometric integration methods that preserve Lyapunov functions,, BIT, 45 (2005), 709.  doi: 10.1007/s10543-005-0034-z.  Google Scholar

[7]

W. Greub, Multilinear Algebra,, $2^{nd}$ edition, (1978).   Google Scholar

[8]

E. Hairer, Symmetric projection methods for differential equations on manifolds,, BIT, 40 (2000), 726.  doi: 10.1023/A:1022344502818.  Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations,, Springer Series in Computational Mathematics, 31 (2006).   Google Scholar

[10]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems,, Springer Series in Computational Mathematics, 8 (1993).   Google Scholar

[11]

T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients,, J. Comput. Phys., 76 (1988), 85.  doi: 10.1016/0021-9991(88)90132-5.  Google Scholar

[12]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021.  doi: 10.1098/rsta.1999.0363.  Google Scholar

[13]

C. Meyer, Matrix Analysis and Applied Linear Algebra,, Society for Industrial and Applied Mathematics (SIAM), (2000).  doi: 10.1137/1.9780898719512.  Google Scholar

[14]

R. A. Norton and G. R. W. Quispel, Discrete gradient methods for preserving a first integral of an ordinary differential equation,, Discret. Contin. Dyn. S., 34 (2014), 1147.  doi: 10.3934/dcds.2014.34.1147.  Google Scholar

[15]

J. M. Ortega, The Newton-Kantorovich theorem,, Amer. Math. Monthly, 75 (1968), 658.  doi: 10.2307/2313800.  Google Scholar

[16]

M. Papi, On the domain of the implicit function and applications,, J. Inequal. Appl., 2005 (2005), 221.  doi: 10.1155/JIA.2005.221.  Google Scholar

[17]

G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral,, Physics Letters. A, 218 (1996), 223.  doi: 10.1016/0375-9601(96)00403-3.  Google Scholar

[18]

G. R. W. Quispel and C. Dyt, Solving ODE's numerically while preserving symmetries, Hamiltonian structure, phase space volume, or first integrals,, in Proceedings of the 15th IMACS World Congress (ed. A. Sydow), 2 (1997), 601.   Google Scholar

[19]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/4/045206.  Google Scholar

[20]

G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral,, J. Phys. A, 29 (1996).  doi: 10.1088/0305-4470/29/13/006.  Google Scholar

[21]

J. C. Simo, N. Tarnow and K. K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics,, Comput. Methods Appl. Mech. Engrg., 100 (1992), 63.  doi: 10.1016/0045-7825(92)90115-Z.  Google Scholar

[22]

L. N. Trefethen and D. Bau III, Numerical Linear Algebra,, Society for Industrial and Applied Mathematics (SIAM), (1997).  doi: 10.1137/1.9780898719574.  Google Scholar

[23]

G. Zhong and J. E. Marsden, Lie-Poisson Hamiltonian-Jacobi theory and Lie-Poisson integrators,, Physics Letters A, 133 (1988), 134.  doi: 10.1016/0375-9601(88)90773-6.  Google Scholar

[1]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[2]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[3]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[4]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[5]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[14]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (6)

[Back to Top]