-
Previous Article
Unbounded regime for circle maps with a flat interval
- DCDS Home
- This Issue
-
Next Article
Wolff type potential estimates and application to nonlinear equations with negative exponents
Projection methods and discrete gradient methods for preserving first integrals of ODEs
1. | Department of Physics, University of Otago, PO Box 56, Dunedin 9054 |
2. | Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086, Australia |
3. | Department of Mathematics, Washington University in St. Louis, Campus Box 1146, One Brookings Drive, St. Louis, Missouri 63130-4899 |
4. | Department of Mathematics, University of Bergen, P.O. Box 7800, N-5020 Bergen |
References:
[1] |
J. C. Butcher, Numerical Methods for Ordinary Differential Equations, $2^{nd}$ edition, John Wiley & Sons Ltd., Chichester, 2008.
doi: 10.1002/9780470753767. |
[2] |
M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients, J. Phys. A, 44 (2011), 305205, 14 pp.
doi: 10.1088/1751-8113/44/30/305205. |
[3] |
R. W. R. Darling, Differential Forms and Connections, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9780511805110. |
[4] |
W. Gautschi, Numerical Analysis. An Introduction, Birkhäuser, Boston, 1997. |
[5] |
O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Science, 6 (1996), 449-467.
doi: 10.1007/BF02440162. |
[6] |
V. Grimm and G. R. W. Quispel, Geometric integration methods that preserve Lyapunov functions, BIT, 45 (2005), 709-723.
doi: 10.1007/s10543-005-0034-z. |
[7] |
W. Greub, Multilinear Algebra, $2^{nd}$ edition, Springer-Verlag, New York, 1978. |
[8] |
E. Hairer, Symmetric projection methods for differential equations on manifolds, BIT, 40 (2000), 726-734.
doi: 10.1023/A:1022344502818. |
[9] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, $2^{nd}$ edition, Springer-Verlag, Berlin, 2006. |
[10] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems, Springer Series in Computational Mathematics, 8, $2^{nd}$ edition, Springer-Verlag, Berlin, 1993. |
[11] |
T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys., 76 (1988), 85-102.
doi: 10.1016/0021-9991(88)90132-5. |
[12] |
R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021-1045.
doi: 10.1098/rsta.1999.0363. |
[13] |
C. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2000.
doi: 10.1137/1.9780898719512. |
[14] |
R. A. Norton and G. R. W. Quispel, Discrete gradient methods for preserving a first integral of an ordinary differential equation, Discret. Contin. Dyn. S., 34 (2014), 1147-1170.
doi: 10.3934/dcds.2014.34.1147. |
[15] |
J. M. Ortega, The Newton-Kantorovich theorem, Amer. Math. Monthly, 75 (1968), 658-660.
doi: 10.2307/2313800. |
[16] |
M. Papi, On the domain of the implicit function and applications, J. Inequal. Appl., 2005 (2005), 221-234.
doi: 10.1155/JIA.2005.221. |
[17] |
G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral, Physics Letters. A, 218 (1996), 223-228.
doi: 10.1016/0375-9601(96)00403-3. |
[18] |
G. R. W. Quispel and C. Dyt, Solving ODE's numerically while preserving symmetries, Hamiltonian structure, phase space volume, or first integrals, in Proceedings of the 15th IMACS World Congress (ed. A. Sydow), Wissenschaft und Technik, Berlin, 2 (1997), 601-607. |
[19] |
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045207, 7pp.
doi: 10.1088/1751-8113/41/4/045206. |
[20] |
G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral, J. Phys. A, 29 (1996), L341-L349.
doi: 10.1088/0305-4470/29/13/006. |
[21] |
J. C. Simo, N. Tarnow and K. K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics, Comput. Methods Appl. Mech. Engrg., 100 (1992), 63-116.
doi: 10.1016/0045-7825(92)90115-Z. |
[22] |
L. N. Trefethen and D. Bau III, Numerical Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1997.
doi: 10.1137/1.9780898719574. |
[23] |
G. Zhong and J. E. Marsden, Lie-Poisson Hamiltonian-Jacobi theory and Lie-Poisson integrators, Physics Letters A, 133 (1988), 134-139.
doi: 10.1016/0375-9601(88)90773-6. |
show all references
References:
[1] |
J. C. Butcher, Numerical Methods for Ordinary Differential Equations, $2^{nd}$ edition, John Wiley & Sons Ltd., Chichester, 2008.
doi: 10.1002/9780470753767. |
[2] |
M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients, J. Phys. A, 44 (2011), 305205, 14 pp.
doi: 10.1088/1751-8113/44/30/305205. |
[3] |
R. W. R. Darling, Differential Forms and Connections, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9780511805110. |
[4] |
W. Gautschi, Numerical Analysis. An Introduction, Birkhäuser, Boston, 1997. |
[5] |
O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Science, 6 (1996), 449-467.
doi: 10.1007/BF02440162. |
[6] |
V. Grimm and G. R. W. Quispel, Geometric integration methods that preserve Lyapunov functions, BIT, 45 (2005), 709-723.
doi: 10.1007/s10543-005-0034-z. |
[7] |
W. Greub, Multilinear Algebra, $2^{nd}$ edition, Springer-Verlag, New York, 1978. |
[8] |
E. Hairer, Symmetric projection methods for differential equations on manifolds, BIT, 40 (2000), 726-734.
doi: 10.1023/A:1022344502818. |
[9] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, $2^{nd}$ edition, Springer-Verlag, Berlin, 2006. |
[10] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems, Springer Series in Computational Mathematics, 8, $2^{nd}$ edition, Springer-Verlag, Berlin, 1993. |
[11] |
T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys., 76 (1988), 85-102.
doi: 10.1016/0021-9991(88)90132-5. |
[12] |
R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021-1045.
doi: 10.1098/rsta.1999.0363. |
[13] |
C. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2000.
doi: 10.1137/1.9780898719512. |
[14] |
R. A. Norton and G. R. W. Quispel, Discrete gradient methods for preserving a first integral of an ordinary differential equation, Discret. Contin. Dyn. S., 34 (2014), 1147-1170.
doi: 10.3934/dcds.2014.34.1147. |
[15] |
J. M. Ortega, The Newton-Kantorovich theorem, Amer. Math. Monthly, 75 (1968), 658-660.
doi: 10.2307/2313800. |
[16] |
M. Papi, On the domain of the implicit function and applications, J. Inequal. Appl., 2005 (2005), 221-234.
doi: 10.1155/JIA.2005.221. |
[17] |
G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral, Physics Letters. A, 218 (1996), 223-228.
doi: 10.1016/0375-9601(96)00403-3. |
[18] |
G. R. W. Quispel and C. Dyt, Solving ODE's numerically while preserving symmetries, Hamiltonian structure, phase space volume, or first integrals, in Proceedings of the 15th IMACS World Congress (ed. A. Sydow), Wissenschaft und Technik, Berlin, 2 (1997), 601-607. |
[19] |
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045207, 7pp.
doi: 10.1088/1751-8113/41/4/045206. |
[20] |
G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral, J. Phys. A, 29 (1996), L341-L349.
doi: 10.1088/0305-4470/29/13/006. |
[21] |
J. C. Simo, N. Tarnow and K. K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics, Comput. Methods Appl. Mech. Engrg., 100 (1992), 63-116.
doi: 10.1016/0045-7825(92)90115-Z. |
[22] |
L. N. Trefethen and D. Bau III, Numerical Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1997.
doi: 10.1137/1.9780898719574. |
[23] |
G. Zhong and J. E. Marsden, Lie-Poisson Hamiltonian-Jacobi theory and Lie-Poisson integrators, Physics Letters A, 133 (1988), 134-139.
doi: 10.1016/0375-9601(88)90773-6. |
[1] |
Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347 |
[2] |
Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020 |
[3] |
Jorge Cortés. Energy conserving nonholonomic integrators. Conference Publications, 2003, 2003 (Special) : 189-199. doi: 10.3934/proc.2003.2003.189 |
[4] |
Sahani Pathiraja, Sebastian Reich. Discrete gradients for computational Bayesian inference. Journal of Computational Dynamics, 2019, 6 (2) : 385-400. doi: 10.3934/jcd.2019019 |
[5] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[6] |
Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343 |
[7] |
Salma Souhaile, Larbi Afifi. Minimum energy compensation for discrete delayed systems with disturbances. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2489-2508. doi: 10.3934/dcdss.2020119 |
[8] |
Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137 |
[9] |
Morched Boughariou. Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 603-616. doi: 10.3934/dcds.2003.9.603 |
[10] |
Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116 |
[11] |
Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1617-1625. doi: 10.3934/dcdsb.2018222 |
[12] |
Jochen Schmid. Stabilization of port-Hamiltonian systems with discontinuous energy densities. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2021063 |
[13] |
Luis C. garcía-Naranjo, Fernando Jiménez. The geometric discretisation of the Suslov problem: A case study of consistency for nonholonomic integrators. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4249-4275. doi: 10.3934/dcds.2017182 |
[14] |
Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597 |
[15] |
Luis C. García-Naranjo, Mats Vermeeren. Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics. Journal of Computational Dynamics, 2021, 8 (3) : 241-271. doi: 10.3934/jcd.2021011 |
[16] |
Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929 |
[17] |
Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939 |
[18] |
Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734 |
[19] |
Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Communications on Pure and Applied Analysis, 2019, 18 (1) : 425-434. doi: 10.3934/cpaa.2019021 |
[20] |
S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]