\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

One-parameter solutions of the Euler-Arnold equation on the contactomorphism group

Abstract Related Papers Cited by
  • We study solutions of the equation $$ g_t-g_{tyy} + 4g^2 - 4gg_{yy} = y gg_{yyy}-yg_yg_{yy}, \qquad y\in\mathbb{R},$$ which arises by considering solutions of the Euler-Arnold equation on a contactomorphism group when the stream function is of the form $f(t,x,y,z) = zg(t,y)$. The equation is analogous to both the Camassa-Holm equation and the Proudman-Johnson equation. We write the equation as an ODE in a Banach space to establish local existence, and we describe conditions leading to global existence and conditions leading to blowup in finite time.
    Mathematics Subject Classification: Primary: 35B65, 53C21, 58D05; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Springer, New York 1998.

    [2]

    C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), 769-790.doi: 10.1016/0022-247X(72)90019-4.

    [3]

    C. P. Boyer, The Sasakian geometry of the Heisenberg group, Bull. Math. Soc. Sci. Math. Roumanie, 52 (2009), 251-262.

    [4]

    R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [5]

    C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, to appear in Comm. Math. Phys. arXiv:1210.7337 (2014).

    [6]

    S. Childress, G. R. Ierley, E. A. Spiegel and W. R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes equations having stagnation-point form, J. Fluid Mech., 203 (1989), 1-22.doi: 10.1017/S0022112089001357.

    [7]

    A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 26 (1998), 303-328.

    [8]

    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586.

    [9]

    A. Constantin and M. Wunsch, On the inviscid Proudman-Johnson equation, Proc. Japan Acad. Ser. A Math. Sci., 85 (2009), 81-83.doi: 10.3792/pjaa.85.81.

    [10]

    D. G. Ebin and S. C. Preston, Riemannian geometry of the contactomorphism group, submitted, arXiv:1409.2197 (2014).

    [11]

    J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation, Commun. Contemp. Math., 14 (2012), 1250016, 13 pp.doi: 10.1142/S0219199712500162.

    [12]

    P. Hartman, Ordinary Differential Equations, second edition, SIAM, Philadelphia, 2002.doi: 10.1137/1.9780898719222.

    [13]

    S. O. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.doi: 10.1063/1.532690.

    [14]

    A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.

    [15]

    H. P. McKean, Breakdown of the Camassa-Holm equation, Comm. Pure Appl. Math., 57 (2004), 416-418.doi: 10.1002/cpa.20003.

    [16]

    G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.doi: 10.1016/S0393-0440(97)00010-7.

    [17]

    I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point, J. Fluid Mech., 12 (1962), 161-168.doi: 10.1017/S0022112062000130.

    [18]

    A. Sarria, Regularity of stagnation point-form solutions to the two-dimensional Euler equations, to appear in Differential Integral Equations, arXiv:1306.4756 (2014).

    [19]

    R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid, SIAM J. Math. Anal., 40 (2008), 1499-1515.doi: 10.1137/080713768.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return