Advanced Search
Article Contents
Article Contents

One-parameter solutions of the Euler-Arnold equation on the contactomorphism group

Abstract Related Papers Cited by
  • We study solutions of the equation $$ g_t-g_{tyy} + 4g^2 - 4gg_{yy} = y gg_{yyy}-yg_yg_{yy}, \qquad y\in\mathbb{R},$$ which arises by considering solutions of the Euler-Arnold equation on a contactomorphism group when the stream function is of the form $f(t,x,y,z) = zg(t,y)$. The equation is analogous to both the Camassa-Holm equation and the Proudman-Johnson equation. We write the equation as an ODE in a Banach space to establish local existence, and we describe conditions leading to global existence and conditions leading to blowup in finite time.
    Mathematics Subject Classification: Primary: 35B65, 53C21, 58D05; Secondary: 35Q35.


    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Springer, New York 1998.


    C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), 769-790.doi: 10.1016/0022-247X(72)90019-4.


    C. P. Boyer, The Sasakian geometry of the Heisenberg group, Bull. Math. Soc. Sci. Math. Roumanie, 52 (2009), 251-262.


    R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.


    C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, to appear in Comm. Math. Phys. arXiv:1210.7337 (2014).


    S. Childress, G. R. Ierley, E. A. Spiegel and W. R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes equations having stagnation-point form, J. Fluid Mech., 203 (1989), 1-22.doi: 10.1017/S0022112089001357.


    A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 26 (1998), 303-328.


    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586.


    A. Constantin and M. Wunsch, On the inviscid Proudman-Johnson equation, Proc. Japan Acad. Ser. A Math. Sci., 85 (2009), 81-83.doi: 10.3792/pjaa.85.81.


    D. G. Ebin and S. C. Preston, Riemannian geometry of the contactomorphism group, submitted, arXiv:1409.2197 (2014).


    J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation, Commun. Contemp. Math., 14 (2012), 1250016, 13 pp.doi: 10.1142/S0219199712500162.


    P. Hartman, Ordinary Differential Equations, second edition, SIAM, Philadelphia, 2002.doi: 10.1137/1.9780898719222.


    S. O. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.doi: 10.1063/1.532690.


    A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.


    H. P. McKean, Breakdown of the Camassa-Holm equation, Comm. Pure Appl. Math., 57 (2004), 416-418.doi: 10.1002/cpa.20003.


    G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.doi: 10.1016/S0393-0440(97)00010-7.


    I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point, J. Fluid Mech., 12 (1962), 161-168.doi: 10.1017/S0022112062000130.


    A. Sarria, Regularity of stagnation point-form solutions to the two-dimensional Euler equations, to appear in Differential Integral Equations, arXiv:1306.4756 (2014).


    R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid, SIAM J. Math. Anal., 40 (2008), 1499-1515.doi: 10.1137/080713768.

  • 加载中

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint