May  2015, 35(5): 2177-2191. doi: 10.3934/dcds.2015.35.2177

Center of planar quintic quasi--homogeneous polynomial differential systems

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China

2. 

Department of Mathematics, Southern Polytechnic State University, Marietta, GA 30060, United States

3. 

Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China

Received  May 2014 Revised  July 2014 Published  December 2014

In this paper we first characterize all quasi--homogeneous but non--homogeneous planar polynomial differential systems of degree five, and then among which we classify all the ones having a center at the origin. Finally we present the topological phase portrait of the systems having a center at the origin.
Citation: Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177
References:
[1]

A. Algaba, N. Fuentes and C. García, Center of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[2]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 396.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

A. Algaba, C. García and M. Reyes, Rational integrability of two dimensional quasi-homogeneous polynomial differential systems,, Nonlinear Anal., 73 (2010), 1318.  doi: 10.1016/j.na.2010.04.059.  Google Scholar

[4]

W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Adv. Math., 254 (2014), 233.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[5]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,, Mat. Sb., 30 (1925), 181.   Google Scholar

[6]

L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3,, J. Math. Anal. Appl., 331 (2007), 1284.  doi: 10.1016/j.jmaa.2006.09.066.  Google Scholar

[7]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Springer-Verlag, (1982).   Google Scholar

[8]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Springer-Verlag, (2006).   Google Scholar

[9]

I. García, On the integrability of quasihomogeneous and related planar vector fields,, Internat. J. Bifur. Chaos, 13 (2003), 995.  doi: 10.1142/S021812740300700X.  Google Scholar

[10]

B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Diff. Eqns., 255 (2013), 3185.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[11]

L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Diff. Eqns., 246 (2009), 3126.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[12]

J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531.  doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[13]

A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations,, J. Math. Phys., 37 (1996), 1871.  doi: 10.1063/1.531484.  Google Scholar

[14]

Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems,, Adv. Difference Eqns., (2007).   Google Scholar

[15]

C. Li, Two problems of planar quadratic systems,, (Chinese), 26 (1983), 471.   Google Scholar

[16]

W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers,, J. Dyn. Diff. Eqns., 21 (2009), 133.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[17]

H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dyn., 78 (2014), 1659.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[18]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[19]

K. E. Malkin, Criteria for the center for a certain differential equation,, (Russian), 2 (1964), 87.   Google Scholar

[20]

P. Mardesic, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Diff. Eqns., 121 (1995), 67.  doi: 10.1006/jdeq.1995.1122.  Google Scholar

[21]

R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields,, Qual. Theory Dyn. Syst., 13 (2014), 39.  doi: 10.1007/s12346-013-0105-5.  Google Scholar

[22]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebraic Approach,, Birkhäuser, (2009).  doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[23]

C. Rousseau and D. Schlomiuk, Cubic vector fields symmetric with respect to a center,, J. Diff. Eqns., 123 (1995), 388.  doi: 10.1006/jdeq.1995.1168.  Google Scholar

[24]

G. Sansone and R. Conti, Non-Linear Differential Equations,, $2^{nd}$ edition, (1964).   Google Scholar

[25]

D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields,, Expo. Math., 8 (1990), 3.   Google Scholar

[26]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in expceptional directions,, Nonlinearity, 17 (2004), 1407.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[27]

N. I. Vulpe and K. S. Sibirski, Centro -affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities,, (Russian), 301 (1988), 1297.   Google Scholar

[28]

Y. Q. Ye, Theory of Limit Cycles,, Trans. Math. Monographs 66, 66 (1986).   Google Scholar

[29]

Y. Q. Ye, Qualitative Theory of Polynomial Differential Systems,, Shanghai Science $&$ Technology Pub., (1995).   Google Scholar

[30]

H. Yoshida, Necessary condition for existence of algebraic first integrals I and II,, Celestial Mech., 31 (1983), 363.  doi: 10.1007/BF01230293.  Google Scholar

[31]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations,, Transl. Math. Monographs, 101 (1992).   Google Scholar

[32]

H. Zoladek, The classification of reversible cubic systems with center,, Topol. Methods Nonlinear Anal., 4 (1994), 79.   Google Scholar

show all references

References:
[1]

A. Algaba, N. Fuentes and C. García, Center of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[2]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 396.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

A. Algaba, C. García and M. Reyes, Rational integrability of two dimensional quasi-homogeneous polynomial differential systems,, Nonlinear Anal., 73 (2010), 1318.  doi: 10.1016/j.na.2010.04.059.  Google Scholar

[4]

W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Adv. Math., 254 (2014), 233.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[5]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,, Mat. Sb., 30 (1925), 181.   Google Scholar

[6]

L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3,, J. Math. Anal. Appl., 331 (2007), 1284.  doi: 10.1016/j.jmaa.2006.09.066.  Google Scholar

[7]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Springer-Verlag, (1982).   Google Scholar

[8]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Springer-Verlag, (2006).   Google Scholar

[9]

I. García, On the integrability of quasihomogeneous and related planar vector fields,, Internat. J. Bifur. Chaos, 13 (2003), 995.  doi: 10.1142/S021812740300700X.  Google Scholar

[10]

B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Diff. Eqns., 255 (2013), 3185.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[11]

L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Diff. Eqns., 246 (2009), 3126.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[12]

J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531.  doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[13]

A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations,, J. Math. Phys., 37 (1996), 1871.  doi: 10.1063/1.531484.  Google Scholar

[14]

Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems,, Adv. Difference Eqns., (2007).   Google Scholar

[15]

C. Li, Two problems of planar quadratic systems,, (Chinese), 26 (1983), 471.   Google Scholar

[16]

W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers,, J. Dyn. Diff. Eqns., 21 (2009), 133.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[17]

H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dyn., 78 (2014), 1659.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[18]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[19]

K. E. Malkin, Criteria for the center for a certain differential equation,, (Russian), 2 (1964), 87.   Google Scholar

[20]

P. Mardesic, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Diff. Eqns., 121 (1995), 67.  doi: 10.1006/jdeq.1995.1122.  Google Scholar

[21]

R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields,, Qual. Theory Dyn. Syst., 13 (2014), 39.  doi: 10.1007/s12346-013-0105-5.  Google Scholar

[22]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebraic Approach,, Birkhäuser, (2009).  doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[23]

C. Rousseau and D. Schlomiuk, Cubic vector fields symmetric with respect to a center,, J. Diff. Eqns., 123 (1995), 388.  doi: 10.1006/jdeq.1995.1168.  Google Scholar

[24]

G. Sansone and R. Conti, Non-Linear Differential Equations,, $2^{nd}$ edition, (1964).   Google Scholar

[25]

D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields,, Expo. Math., 8 (1990), 3.   Google Scholar

[26]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in expceptional directions,, Nonlinearity, 17 (2004), 1407.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[27]

N. I. Vulpe and K. S. Sibirski, Centro -affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities,, (Russian), 301 (1988), 1297.   Google Scholar

[28]

Y. Q. Ye, Theory of Limit Cycles,, Trans. Math. Monographs 66, 66 (1986).   Google Scholar

[29]

Y. Q. Ye, Qualitative Theory of Polynomial Differential Systems,, Shanghai Science $&$ Technology Pub., (1995).   Google Scholar

[30]

H. Yoshida, Necessary condition for existence of algebraic first integrals I and II,, Celestial Mech., 31 (1983), 363.  doi: 10.1007/BF01230293.  Google Scholar

[31]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations,, Transl. Math. Monographs, 101 (1992).   Google Scholar

[32]

H. Zoladek, The classification of reversible cubic systems with center,, Topol. Methods Nonlinear Anal., 4 (1994), 79.   Google Scholar

[1]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150

[2]

Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121

[3]

Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531

[4]

Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015

[5]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[6]

Antonio Garijo, Armengol Gasull, Xavier Jarque. Local and global phase portrait of equation $\dot z=f(z)$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 309-329. doi: 10.3934/dcds.2007.17.309

[7]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[8]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[9]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

[10]

Alejandro Sarria. Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 641-673. doi: 10.3934/dcdsb.2015.20.641

[11]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[12]

Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225

[13]

Zhong Wan, Chunhua Yang. New approach to global minimization of normal multivariate polynomial based on tensor. Journal of Industrial & Management Optimization, 2008, 4 (2) : 271-285. doi: 10.3934/jimo.2008.4.271

[14]

Can Gao, Joachim Krieger. Optimal polynomial blow up range for critical wave maps. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1705-1741. doi: 10.3934/cpaa.2015.14.1705

[15]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[16]

Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345

[17]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047

[18]

Chunjiang Qian, Wei Lin, Wenting Zha. Generalized homogeneous systems with applications to nonlinear control: A survey. Mathematical Control & Related Fields, 2015, 5 (3) : 585-611. doi: 10.3934/mcrf.2015.5.585

[19]

Jaume Giné. Center conditions for generalized polynomial kukles systems. Communications on Pure & Applied Analysis, 2017, 16 (2) : 417-426. doi: 10.3934/cpaa.2017021

[20]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]