May  2015, 35(5): 2177-2191. doi: 10.3934/dcds.2015.35.2177

Center of planar quintic quasi--homogeneous polynomial differential systems

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China

2. 

Department of Mathematics, Southern Polytechnic State University, Marietta, GA 30060, United States

3. 

Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China

Received  May 2014 Revised  July 2014 Published  December 2014

In this paper we first characterize all quasi--homogeneous but non--homogeneous planar polynomial differential systems of degree five, and then among which we classify all the ones having a center at the origin. Finally we present the topological phase portrait of the systems having a center at the origin.
Citation: Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177
References:
[1]

Nonlinear Anal. Real World Appl., 13 (2012), 419-431. doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[2]

Nonlinearity, 22 (2009), 396-420. doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

Nonlinear Anal., 73 (2010), 1318-1327. doi: 10.1016/j.na.2010.04.059.  Google Scholar

[4]

Adv. Math., 254 (2014), 233-250. doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[5]

Mat. Sb., 30 (1925), 181-196, Amer. Math. Soc. Transl., 1954 (1954), 1-19.  Google Scholar

[6]

J. Math. Anal. Appl., 331 (2007), 1284-1298. doi: 10.1016/j.jmaa.2006.09.066.  Google Scholar

[7]

Springer-Verlag, Berlin, 1982.  Google Scholar

[8]

Springer-Verlag, Berlin, 2006.  Google Scholar

[9]

Internat. J. Bifur. Chaos, 13 (2003), 995-1002. doi: 10.1142/S021812740300700X.  Google Scholar

[10]

J. Diff. Eqns., 255 (2013), 3185-3204. doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[11]

J. Diff. Eqns., 246 (2009), 3126-3135. doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[12]

Discrete Contin. Dyn. Syst., 33 (2013), 4531-4547. doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[13]

J. Math. Phys., 37 (1996), 1871-1893. doi: 10.1063/1.531484.  Google Scholar

[14]

Adv. Difference Eqns., (2007), Art ID 98427, 10 pp.  Google Scholar

[15]

(Chinese), Science in China Math, 26 (1983), 471-481.  Google Scholar

[16]

J. Dyn. Diff. Eqns., 21 (2009), 133-152. doi: 10.1007/s10884-008-9126-1.  Google Scholar

[17]

Nonlinear Dyn., 78 (2014), 1659-1681. doi: 10.1007/s11071-014-1541-8.  Google Scholar

[18]

Nonlinearity, 15 (2002), 1269-1280. doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[19]

(Russian), Volz. Mat. Sb. Vyp, 2 (1964), 87-91.  Google Scholar

[20]

J. Diff. Eqns., 121 (1995), 67-108. doi: 10.1006/jdeq.1995.1122.  Google Scholar

[21]

Qual. Theory Dyn. Syst., 13 (2014), 39-72. doi: 10.1007/s12346-013-0105-5.  Google Scholar

[22]

Birkhäuser, Boston, 2009. doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[23]

J. Diff. Eqns., 123 (1995), 388-436. doi: 10.1006/jdeq.1995.1168.  Google Scholar

[24]

$2^{nd}$ edition, Pergamon Press, New York, 1964.  Google Scholar

[25]

Expo. Math., 8 (1990), 3-25.  Google Scholar

[26]

Nonlinearity, 17 (2004), 1407-1426. doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[27]

(Russian), Dokl. Akad. Nauk SSSR, 301 (1988), 1297-1301, translation in: Soviet Math. Dokl., 38 (1989), 198-201.  Google Scholar

[28]

Trans. Math. Monographs 66, Amer. Math. Soc., Providence, RI, 1986.  Google Scholar

[29]

Shanghai Science $&$ Technology Pub., Shanghai, 1995. Google Scholar

[30]

Celestial Mech., 31 (1983), 363-379. doi: 10.1007/BF01230293.  Google Scholar

[31]

Transl. Math. Monographs, 101, Amer. Math. Soc., Providence, 1992.  Google Scholar

[32]

Topol. Methods Nonlinear Anal., 4 (1994), 79-136.  Google Scholar

show all references

References:
[1]

Nonlinear Anal. Real World Appl., 13 (2012), 419-431. doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[2]

Nonlinearity, 22 (2009), 396-420. doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

Nonlinear Anal., 73 (2010), 1318-1327. doi: 10.1016/j.na.2010.04.059.  Google Scholar

[4]

Adv. Math., 254 (2014), 233-250. doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[5]

Mat. Sb., 30 (1925), 181-196, Amer. Math. Soc. Transl., 1954 (1954), 1-19.  Google Scholar

[6]

J. Math. Anal. Appl., 331 (2007), 1284-1298. doi: 10.1016/j.jmaa.2006.09.066.  Google Scholar

[7]

Springer-Verlag, Berlin, 1982.  Google Scholar

[8]

Springer-Verlag, Berlin, 2006.  Google Scholar

[9]

Internat. J. Bifur. Chaos, 13 (2003), 995-1002. doi: 10.1142/S021812740300700X.  Google Scholar

[10]

J. Diff. Eqns., 255 (2013), 3185-3204. doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[11]

J. Diff. Eqns., 246 (2009), 3126-3135. doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[12]

Discrete Contin. Dyn. Syst., 33 (2013), 4531-4547. doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[13]

J. Math. Phys., 37 (1996), 1871-1893. doi: 10.1063/1.531484.  Google Scholar

[14]

Adv. Difference Eqns., (2007), Art ID 98427, 10 pp.  Google Scholar

[15]

(Chinese), Science in China Math, 26 (1983), 471-481.  Google Scholar

[16]

J. Dyn. Diff. Eqns., 21 (2009), 133-152. doi: 10.1007/s10884-008-9126-1.  Google Scholar

[17]

Nonlinear Dyn., 78 (2014), 1659-1681. doi: 10.1007/s11071-014-1541-8.  Google Scholar

[18]

Nonlinearity, 15 (2002), 1269-1280. doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[19]

(Russian), Volz. Mat. Sb. Vyp, 2 (1964), 87-91.  Google Scholar

[20]

J. Diff. Eqns., 121 (1995), 67-108. doi: 10.1006/jdeq.1995.1122.  Google Scholar

[21]

Qual. Theory Dyn. Syst., 13 (2014), 39-72. doi: 10.1007/s12346-013-0105-5.  Google Scholar

[22]

Birkhäuser, Boston, 2009. doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[23]

J. Diff. Eqns., 123 (1995), 388-436. doi: 10.1006/jdeq.1995.1168.  Google Scholar

[24]

$2^{nd}$ edition, Pergamon Press, New York, 1964.  Google Scholar

[25]

Expo. Math., 8 (1990), 3-25.  Google Scholar

[26]

Nonlinearity, 17 (2004), 1407-1426. doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[27]

(Russian), Dokl. Akad. Nauk SSSR, 301 (1988), 1297-1301, translation in: Soviet Math. Dokl., 38 (1989), 198-201.  Google Scholar

[28]

Trans. Math. Monographs 66, Amer. Math. Soc., Providence, RI, 1986.  Google Scholar

[29]

Shanghai Science $&$ Technology Pub., Shanghai, 1995. Google Scholar

[30]

Celestial Mech., 31 (1983), 363-379. doi: 10.1007/BF01230293.  Google Scholar

[31]

Transl. Math. Monographs, 101, Amer. Math. Soc., Providence, 1992.  Google Scholar

[32]

Topol. Methods Nonlinear Anal., 4 (1994), 79-136.  Google Scholar

[1]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[2]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[3]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021079

[4]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[5]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[6]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[7]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[8]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[9]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[10]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[11]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[12]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[13]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[14]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[15]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[16]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[17]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[18]

Mayte Pérez-Llanos, Juan Pablo Pinasco, Nicolas Saintier. Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations. Networks & Heterogeneous Media, 2021, 16 (2) : 257-281. doi: 10.3934/nhm.2021006

[19]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[20]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]