-
Previous Article
Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity
- DCDS Home
- This Issue
-
Next Article
Random backward iteration algorithm for Julia sets of rational semigroups
Center of planar quintic quasi--homogeneous polynomial differential systems
1. | Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China |
2. | Department of Mathematics, Southern Polytechnic State University, Marietta, GA 30060, United States |
3. | Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China |
References:
[1] |
Nonlinear Anal. Real World Appl., 13 (2012), 419-431.
doi: 10.1016/j.nonrwa.2011.07.056. |
[2] |
Nonlinearity, 22 (2009), 396-420.
doi: 10.1088/0951-7715/22/2/009. |
[3] |
Nonlinear Anal., 73 (2010), 1318-1327.
doi: 10.1016/j.na.2010.04.059. |
[4] |
Adv. Math., 254 (2014), 233-250.
doi: 10.1016/j.aim.2013.12.006. |
[5] |
Mat. Sb., 30 (1925), 181-196, Amer. Math. Soc. Transl., 1954 (1954), 1-19. |
[6] |
J. Math. Anal. Appl., 331 (2007), 1284-1298.
doi: 10.1016/j.jmaa.2006.09.066. |
[7] |
Springer-Verlag, Berlin, 1982. |
[8] |
Springer-Verlag, Berlin, 2006. |
[9] |
Internat. J. Bifur. Chaos, 13 (2003), 995-1002.
doi: 10.1142/S021812740300700X. |
[10] |
J. Diff. Eqns., 255 (2013), 3185-3204.
doi: 10.1016/j.jde.2013.07.032. |
[11] |
J. Diff. Eqns., 246 (2009), 3126-3135.
doi: 10.1016/j.jde.2009.02.010. |
[12] |
Discrete Contin. Dyn. Syst., 33 (2013), 4531-4547.
doi: 10.3934/dcds.2013.33.4531. |
[13] |
J. Math. Phys., 37 (1996), 1871-1893.
doi: 10.1063/1.531484. |
[14] |
Adv. Difference Eqns., (2007), Art ID 98427, 10 pp. |
[15] |
(Chinese), Science in China Math, 26 (1983), 471-481. |
[16] |
J. Dyn. Diff. Eqns., 21 (2009), 133-152.
doi: 10.1007/s10884-008-9126-1. |
[17] |
Nonlinear Dyn., 78 (2014), 1659-1681.
doi: 10.1007/s11071-014-1541-8. |
[18] |
Nonlinearity, 15 (2002), 1269-1280.
doi: 10.1088/0951-7715/15/4/313. |
[19] |
(Russian), Volz. Mat. Sb. Vyp, 2 (1964), 87-91. |
[20] |
J. Diff. Eqns., 121 (1995), 67-108.
doi: 10.1006/jdeq.1995.1122. |
[21] |
Qual. Theory Dyn. Syst., 13 (2014), 39-72.
doi: 10.1007/s12346-013-0105-5. |
[22] |
Birkhäuser, Boston, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[23] |
J. Diff. Eqns., 123 (1995), 388-436.
doi: 10.1006/jdeq.1995.1168. |
[24] |
$2^{nd}$ edition, Pergamon Press, New York, 1964. |
[25] |
Expo. Math., 8 (1990), 3-25. |
[26] |
Nonlinearity, 17 (2004), 1407-1426.
doi: 10.1088/0951-7715/17/4/015. |
[27] |
(Russian), Dokl. Akad. Nauk SSSR, 301 (1988), 1297-1301, translation in: Soviet Math. Dokl., 38 (1989), 198-201. |
[28] |
Trans. Math. Monographs 66, Amer. Math. Soc., Providence, RI, 1986. |
[29] |
Shanghai Science $&$ Technology Pub., Shanghai, 1995. Google Scholar |
[30] |
Celestial Mech., 31 (1983), 363-379.
doi: 10.1007/BF01230293. |
[31] |
Transl. Math. Monographs, 101, Amer. Math. Soc., Providence, 1992. |
[32] |
Topol. Methods Nonlinear Anal., 4 (1994), 79-136. |
show all references
References:
[1] |
Nonlinear Anal. Real World Appl., 13 (2012), 419-431.
doi: 10.1016/j.nonrwa.2011.07.056. |
[2] |
Nonlinearity, 22 (2009), 396-420.
doi: 10.1088/0951-7715/22/2/009. |
[3] |
Nonlinear Anal., 73 (2010), 1318-1327.
doi: 10.1016/j.na.2010.04.059. |
[4] |
Adv. Math., 254 (2014), 233-250.
doi: 10.1016/j.aim.2013.12.006. |
[5] |
Mat. Sb., 30 (1925), 181-196, Amer. Math. Soc. Transl., 1954 (1954), 1-19. |
[6] |
J. Math. Anal. Appl., 331 (2007), 1284-1298.
doi: 10.1016/j.jmaa.2006.09.066. |
[7] |
Springer-Verlag, Berlin, 1982. |
[8] |
Springer-Verlag, Berlin, 2006. |
[9] |
Internat. J. Bifur. Chaos, 13 (2003), 995-1002.
doi: 10.1142/S021812740300700X. |
[10] |
J. Diff. Eqns., 255 (2013), 3185-3204.
doi: 10.1016/j.jde.2013.07.032. |
[11] |
J. Diff. Eqns., 246 (2009), 3126-3135.
doi: 10.1016/j.jde.2009.02.010. |
[12] |
Discrete Contin. Dyn. Syst., 33 (2013), 4531-4547.
doi: 10.3934/dcds.2013.33.4531. |
[13] |
J. Math. Phys., 37 (1996), 1871-1893.
doi: 10.1063/1.531484. |
[14] |
Adv. Difference Eqns., (2007), Art ID 98427, 10 pp. |
[15] |
(Chinese), Science in China Math, 26 (1983), 471-481. |
[16] |
J. Dyn. Diff. Eqns., 21 (2009), 133-152.
doi: 10.1007/s10884-008-9126-1. |
[17] |
Nonlinear Dyn., 78 (2014), 1659-1681.
doi: 10.1007/s11071-014-1541-8. |
[18] |
Nonlinearity, 15 (2002), 1269-1280.
doi: 10.1088/0951-7715/15/4/313. |
[19] |
(Russian), Volz. Mat. Sb. Vyp, 2 (1964), 87-91. |
[20] |
J. Diff. Eqns., 121 (1995), 67-108.
doi: 10.1006/jdeq.1995.1122. |
[21] |
Qual. Theory Dyn. Syst., 13 (2014), 39-72.
doi: 10.1007/s12346-013-0105-5. |
[22] |
Birkhäuser, Boston, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[23] |
J. Diff. Eqns., 123 (1995), 388-436.
doi: 10.1006/jdeq.1995.1168. |
[24] |
$2^{nd}$ edition, Pergamon Press, New York, 1964. |
[25] |
Expo. Math., 8 (1990), 3-25. |
[26] |
Nonlinearity, 17 (2004), 1407-1426.
doi: 10.1088/0951-7715/17/4/015. |
[27] |
(Russian), Dokl. Akad. Nauk SSSR, 301 (1988), 1297-1301, translation in: Soviet Math. Dokl., 38 (1989), 198-201. |
[28] |
Trans. Math. Monographs 66, Amer. Math. Soc., Providence, RI, 1986. |
[29] |
Shanghai Science $&$ Technology Pub., Shanghai, 1995. Google Scholar |
[30] |
Celestial Mech., 31 (1983), 363-379.
doi: 10.1007/BF01230293. |
[31] |
Transl. Math. Monographs, 101, Amer. Math. Soc., Providence, 1992. |
[32] |
Topol. Methods Nonlinear Anal., 4 (1994), 79-136. |
[1] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[2] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[3] |
Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021079 |
[4] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[5] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[6] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[7] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[8] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021032 |
[9] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021060 |
[10] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
[11] |
Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225 |
[12] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[13] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[14] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021093 |
[15] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[16] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[17] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[18] |
Mayte Pérez-Llanos, Juan Pablo Pinasco, Nicolas Saintier. Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations. Networks & Heterogeneous Media, 2021, 16 (2) : 257-281. doi: 10.3934/nhm.2021006 |
[19] |
Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017 |
[20] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]