May  2015, 35(5): 2177-2191. doi: 10.3934/dcds.2015.35.2177

Center of planar quintic quasi--homogeneous polynomial differential systems

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China

2. 

Department of Mathematics, Southern Polytechnic State University, Marietta, GA 30060, United States

3. 

Department of Mathematics and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China

Received  May 2014 Revised  July 2014 Published  December 2014

In this paper we first characterize all quasi--homogeneous but non--homogeneous planar polynomial differential systems of degree five, and then among which we classify all the ones having a center at the origin. Finally we present the topological phase portrait of the systems having a center at the origin.
Citation: Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177
References:
[1]

A. Algaba, N. Fuentes and C. García, Center of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[2]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 396.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

A. Algaba, C. García and M. Reyes, Rational integrability of two dimensional quasi-homogeneous polynomial differential systems,, Nonlinear Anal., 73 (2010), 1318.  doi: 10.1016/j.na.2010.04.059.  Google Scholar

[4]

W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Adv. Math., 254 (2014), 233.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[5]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,, Mat. Sb., 30 (1925), 181.   Google Scholar

[6]

L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3,, J. Math. Anal. Appl., 331 (2007), 1284.  doi: 10.1016/j.jmaa.2006.09.066.  Google Scholar

[7]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Springer-Verlag, (1982).   Google Scholar

[8]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Springer-Verlag, (2006).   Google Scholar

[9]

I. García, On the integrability of quasihomogeneous and related planar vector fields,, Internat. J. Bifur. Chaos, 13 (2003), 995.  doi: 10.1142/S021812740300700X.  Google Scholar

[10]

B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Diff. Eqns., 255 (2013), 3185.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[11]

L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Diff. Eqns., 246 (2009), 3126.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[12]

J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531.  doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[13]

A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations,, J. Math. Phys., 37 (1996), 1871.  doi: 10.1063/1.531484.  Google Scholar

[14]

Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems,, Adv. Difference Eqns., (2007).   Google Scholar

[15]

C. Li, Two problems of planar quadratic systems,, (Chinese), 26 (1983), 471.   Google Scholar

[16]

W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers,, J. Dyn. Diff. Eqns., 21 (2009), 133.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[17]

H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dyn., 78 (2014), 1659.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[18]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[19]

K. E. Malkin, Criteria for the center for a certain differential equation,, (Russian), 2 (1964), 87.   Google Scholar

[20]

P. Mardesic, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Diff. Eqns., 121 (1995), 67.  doi: 10.1006/jdeq.1995.1122.  Google Scholar

[21]

R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields,, Qual. Theory Dyn. Syst., 13 (2014), 39.  doi: 10.1007/s12346-013-0105-5.  Google Scholar

[22]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebraic Approach,, Birkhäuser, (2009).  doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[23]

C. Rousseau and D. Schlomiuk, Cubic vector fields symmetric with respect to a center,, J. Diff. Eqns., 123 (1995), 388.  doi: 10.1006/jdeq.1995.1168.  Google Scholar

[24]

G. Sansone and R. Conti, Non-Linear Differential Equations,, $2^{nd}$ edition, (1964).   Google Scholar

[25]

D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields,, Expo. Math., 8 (1990), 3.   Google Scholar

[26]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in expceptional directions,, Nonlinearity, 17 (2004), 1407.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[27]

N. I. Vulpe and K. S. Sibirski, Centro -affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities,, (Russian), 301 (1988), 1297.   Google Scholar

[28]

Y. Q. Ye, Theory of Limit Cycles,, Trans. Math. Monographs 66, 66 (1986).   Google Scholar

[29]

Y. Q. Ye, Qualitative Theory of Polynomial Differential Systems,, Shanghai Science $&$ Technology Pub., (1995).   Google Scholar

[30]

H. Yoshida, Necessary condition for existence of algebraic first integrals I and II,, Celestial Mech., 31 (1983), 363.  doi: 10.1007/BF01230293.  Google Scholar

[31]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations,, Transl. Math. Monographs, 101 (1992).   Google Scholar

[32]

H. Zoladek, The classification of reversible cubic systems with center,, Topol. Methods Nonlinear Anal., 4 (1994), 79.   Google Scholar

show all references

References:
[1]

A. Algaba, N. Fuentes and C. García, Center of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[2]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 396.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

A. Algaba, C. García and M. Reyes, Rational integrability of two dimensional quasi-homogeneous polynomial differential systems,, Nonlinear Anal., 73 (2010), 1318.  doi: 10.1016/j.na.2010.04.059.  Google Scholar

[4]

W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Adv. Math., 254 (2014), 233.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[5]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,, Mat. Sb., 30 (1925), 181.   Google Scholar

[6]

L. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3,, J. Math. Anal. Appl., 331 (2007), 1284.  doi: 10.1016/j.jmaa.2006.09.066.  Google Scholar

[7]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Springer-Verlag, (1982).   Google Scholar

[8]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Springer-Verlag, (2006).   Google Scholar

[9]

I. García, On the integrability of quasihomogeneous and related planar vector fields,, Internat. J. Bifur. Chaos, 13 (2003), 995.  doi: 10.1142/S021812740300700X.  Google Scholar

[10]

B. García, J. Llibre and J. S. Pérez del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Diff. Eqns., 255 (2013), 3185.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[11]

L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Diff. Eqns., 246 (2009), 3126.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[12]

J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531.  doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[13]

A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations,, J. Math. Phys., 37 (1996), 1871.  doi: 10.1063/1.531484.  Google Scholar

[14]

Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems,, Adv. Difference Eqns., (2007).   Google Scholar

[15]

C. Li, Two problems of planar quadratic systems,, (Chinese), 26 (1983), 471.   Google Scholar

[16]

W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers,, J. Dyn. Diff. Eqns., 21 (2009), 133.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[17]

H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dyn., 78 (2014), 1659.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[18]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[19]

K. E. Malkin, Criteria for the center for a certain differential equation,, (Russian), 2 (1964), 87.   Google Scholar

[20]

P. Mardesic, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Diff. Eqns., 121 (1995), 67.  doi: 10.1006/jdeq.1995.1122.  Google Scholar

[21]

R. Oliveira and Y. Zhao, Structural stability of planar quasihomogeneous vector fields,, Qual. Theory Dyn. Syst., 13 (2014), 39.  doi: 10.1007/s12346-013-0105-5.  Google Scholar

[22]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebraic Approach,, Birkhäuser, (2009).  doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[23]

C. Rousseau and D. Schlomiuk, Cubic vector fields symmetric with respect to a center,, J. Diff. Eqns., 123 (1995), 388.  doi: 10.1006/jdeq.1995.1168.  Google Scholar

[24]

G. Sansone and R. Conti, Non-Linear Differential Equations,, $2^{nd}$ edition, (1964).   Google Scholar

[25]

D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields,, Expo. Math., 8 (1990), 3.   Google Scholar

[26]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in expceptional directions,, Nonlinearity, 17 (2004), 1407.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[27]

N. I. Vulpe and K. S. Sibirski, Centro -affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities,, (Russian), 301 (1988), 1297.   Google Scholar

[28]

Y. Q. Ye, Theory of Limit Cycles,, Trans. Math. Monographs 66, 66 (1986).   Google Scholar

[29]

Y. Q. Ye, Qualitative Theory of Polynomial Differential Systems,, Shanghai Science $&$ Technology Pub., (1995).   Google Scholar

[30]

H. Yoshida, Necessary condition for existence of algebraic first integrals I and II,, Celestial Mech., 31 (1983), 363.  doi: 10.1007/BF01230293.  Google Scholar

[31]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations,, Transl. Math. Monographs, 101 (1992).   Google Scholar

[32]

H. Zoladek, The classification of reversible cubic systems with center,, Topol. Methods Nonlinear Anal., 4 (1994), 79.   Google Scholar

[1]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[2]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[3]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[4]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[6]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[7]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[10]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[11]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[12]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[13]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[14]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[15]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[16]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[17]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[18]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[19]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[20]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]