-
Previous Article
Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian
- DCDS Home
- This Issue
-
Next Article
Center of planar quintic quasi--homogeneous polynomial differential systems
Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity
1. | Department of Mathematics, Washington State University, Pullman, WA 99164-3113 |
References:
[1] |
G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Int. J. Engng. Sci., 12 (1974), 657-663.
doi: 10.1016/0020-7225(74)90042-1. |
[2] |
H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[3] |
C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.
doi: 10.1016/j.aim.2010.08.017. |
[4] |
C. Cao, J. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal., 46 (2014), 588-602.
doi: 10.1137/130937718. |
[5] |
M. Chen, Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 929-935.
doi: 10.1016/S0252-9602(13)60051-X. |
[6] |
Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.
doi: 10.1016/j.jde.2011.09.035. |
[7] |
J.-Y. Chemin, Perfect Incompressible Fluids, Clarendon Press, Oxford, 1998. |
[8] |
B.-Q. Dong and Z.-M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows, J. Math. Phys., 50 (2009), 103525, 13pp.
doi: 10.1063/1.3245862. |
[9] |
B.-Q. Dong and Z.-M. Chen, Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows, Discrete Contin. Dyn. Syst., 23 (2009), 765-784.
doi: 10.3934/dcds.2009.23.765. |
[10] |
B.Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows, Math. Methods Appl. Sci., 34 (2011), 595-606.
doi: 10.1002/mma.1383. |
[11] |
B.-Q. Dong and W. Zhang, On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces, Nonlinear Anal., 73 (2010), 2334-2341.
doi: 10.1016/j.na.2010.06.029. |
[12] |
B.-Q. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations, 249 (2010), 200-213.
doi: 10.1016/j.jde.2010.03.016. |
[13] |
A. C. Eringen, Simple microfluids, Int. Engng. Sci., 2 (1964), 205-217.
doi: 10.1016/0020-7225(64)90005-9. |
[14] |
A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.
doi: 10.1512/iumj.1967.16.16001. |
[15] |
G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Engng. Sci., 15 (1977), 105-108.
doi: 10.1016/0020-7225(77)90025-8. |
[16] |
H. Inoue, K. Matsuura and M. Ŏtani, Strong solutions of magneto-micropolar fluid equation, in Discrete and continuous dynamical systems, 2003; Dynamical systems and differential equations, Wilmington, NC (2002), 439-448. |
[17] |
Q. Jiu and J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion, Z. Angew. Math. Phys., (2014), 1-11.
doi: 10.1007/s00033-014-0415-8. |
[18] |
G. Lukaszewicz, On nonstationary flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 12 (1988), 83-97. |
[19] |
G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 13 (1989), 105-120.
doi: 10.2307/2152750. |
[20] |
G. Lukaszewicz, Micropolar Fluids, Theory and Applications, Birkhäuser, Boston, 1999.
doi: 10.1007/978-1-4612-0641-5. |
[21] |
E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions, Abstr. Appl. Anal., 4 (1999), 109-125.
doi: 10.1155/S1085337599000287. |
[22] |
M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions, Math. Nachr., 188 (1997), 301-319.
doi: 10.1002/mana.19971880116. |
[23] |
M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.
doi: 10.1002/cpa.3160360506. |
[24] |
C. V. Tran, X. Yu and Z. Zhai, On global regularity of 2D generalized magnetohydrodynamics equations, J. Differential Equations, 254 (2013), 4194-4216.
doi: 10.1016/j.jde.2013.02.016. |
[25] |
Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations, Bound. Value Probl., 2013 (2013), 12pp.
doi: 10.1186/1687-2770-2013-58. |
[26] |
J. Wu, The generalized MHD equations, J. Differential Equations, 195 (2003), 284-312.
doi: 10.1016/j.jde.2003.07.007. |
[27] |
J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295-305.
doi: 10.1007/s00021-009-0017-y. |
[28] |
Z. Xiang and H. Yang, On the regularity criteria for the 3D magneto-micropolar fluids in terms of one directional derivative, Bound. Value Probl., 139 (2012), 14pp.
doi: 10.1186/1687-2770-2012-139. |
[29] |
L. Xue, Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations, Math. Methods Appl. Sci., 34 (2011), 1760-1777.
doi: 10.1002/mma.1491. |
[30] |
N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain, Math. Meth. Appl. Sci., 28 (2005), 1507-1526.
doi: 10.1002/mma.617. |
[31] |
K. Yamazaki, Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation, Nonliear Anal., 94 (2014), 194-205.
doi: 10.1016/j.na.2013.08.020. |
[32] |
K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl. Math. Lett., 29 (2014), 46-51.
doi: 10.1016/j.aml.2013.10.014. |
[33] |
K. Yamazaki, On the global regularity of two-dimensional generalized magnetohydrodynamics system, J. Math. Anal. Appl., 416 (2014), 99-111.
doi: 10.1016/j.jmaa.2014.02.027. |
[34] |
K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system,, Appl. Math., ().
|
[35] |
K. Yamazaki, $(N-1)$ velocity components condition for the generalized MHD system in $N$-dimension, Kinet. Relat. Models, 7 (2014), 779-792. |
[36] |
B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1469-1480.
doi: 10.1016/S0252-9602(10)60139-7. |
[37] |
B. Yuan, On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space, Proc. Amer. Math. Soc., 138 (2010), 2025-2036.
doi: 10.1090/S0002-9939-10-10232-9. |
[38] |
B. Yuan and L. Bai, Remarks on global regularity of 2D generalized MHD equations, J. Math. Anal. Appl., 413 (2014), 633-640.
doi: 10.1016/j.jmaa.2013.12.024. |
[39] |
J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations, Math. Meth. Appl. Sci., 31 (2008), 1113-1130.
doi: 10.1002/mma.967. |
show all references
References:
[1] |
G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions, Int. J. Engng. Sci., 12 (1974), 657-663.
doi: 10.1016/0020-7225(74)90042-1. |
[2] |
H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[3] |
C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.
doi: 10.1016/j.aim.2010.08.017. |
[4] |
C. Cao, J. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal., 46 (2014), 588-602.
doi: 10.1137/130937718. |
[5] |
M. Chen, Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 929-935.
doi: 10.1016/S0252-9602(13)60051-X. |
[6] |
Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.
doi: 10.1016/j.jde.2011.09.035. |
[7] |
J.-Y. Chemin, Perfect Incompressible Fluids, Clarendon Press, Oxford, 1998. |
[8] |
B.-Q. Dong and Z.-M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows, J. Math. Phys., 50 (2009), 103525, 13pp.
doi: 10.1063/1.3245862. |
[9] |
B.-Q. Dong and Z.-M. Chen, Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows, Discrete Contin. Dyn. Syst., 23 (2009), 765-784.
doi: 10.3934/dcds.2009.23.765. |
[10] |
B.Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows, Math. Methods Appl. Sci., 34 (2011), 595-606.
doi: 10.1002/mma.1383. |
[11] |
B.-Q. Dong and W. Zhang, On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces, Nonlinear Anal., 73 (2010), 2334-2341.
doi: 10.1016/j.na.2010.06.029. |
[12] |
B.-Q. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations, 249 (2010), 200-213.
doi: 10.1016/j.jde.2010.03.016. |
[13] |
A. C. Eringen, Simple microfluids, Int. Engng. Sci., 2 (1964), 205-217.
doi: 10.1016/0020-7225(64)90005-9. |
[14] |
A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.
doi: 10.1512/iumj.1967.16.16001. |
[15] |
G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Engng. Sci., 15 (1977), 105-108.
doi: 10.1016/0020-7225(77)90025-8. |
[16] |
H. Inoue, K. Matsuura and M. Ŏtani, Strong solutions of magneto-micropolar fluid equation, in Discrete and continuous dynamical systems, 2003; Dynamical systems and differential equations, Wilmington, NC (2002), 439-448. |
[17] |
Q. Jiu and J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion, Z. Angew. Math. Phys., (2014), 1-11.
doi: 10.1007/s00033-014-0415-8. |
[18] |
G. Lukaszewicz, On nonstationary flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 12 (1988), 83-97. |
[19] |
G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 13 (1989), 105-120.
doi: 10.2307/2152750. |
[20] |
G. Lukaszewicz, Micropolar Fluids, Theory and Applications, Birkhäuser, Boston, 1999.
doi: 10.1007/978-1-4612-0641-5. |
[21] |
E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions, Abstr. Appl. Anal., 4 (1999), 109-125.
doi: 10.1155/S1085337599000287. |
[22] |
M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions, Math. Nachr., 188 (1997), 301-319.
doi: 10.1002/mana.19971880116. |
[23] |
M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.
doi: 10.1002/cpa.3160360506. |
[24] |
C. V. Tran, X. Yu and Z. Zhai, On global regularity of 2D generalized magnetohydrodynamics equations, J. Differential Equations, 254 (2013), 4194-4216.
doi: 10.1016/j.jde.2013.02.016. |
[25] |
Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations, Bound. Value Probl., 2013 (2013), 12pp.
doi: 10.1186/1687-2770-2013-58. |
[26] |
J. Wu, The generalized MHD equations, J. Differential Equations, 195 (2003), 284-312.
doi: 10.1016/j.jde.2003.07.007. |
[27] |
J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295-305.
doi: 10.1007/s00021-009-0017-y. |
[28] |
Z. Xiang and H. Yang, On the regularity criteria for the 3D magneto-micropolar fluids in terms of one directional derivative, Bound. Value Probl., 139 (2012), 14pp.
doi: 10.1186/1687-2770-2012-139. |
[29] |
L. Xue, Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations, Math. Methods Appl. Sci., 34 (2011), 1760-1777.
doi: 10.1002/mma.1491. |
[30] |
N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain, Math. Meth. Appl. Sci., 28 (2005), 1507-1526.
doi: 10.1002/mma.617. |
[31] |
K. Yamazaki, Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation, Nonliear Anal., 94 (2014), 194-205.
doi: 10.1016/j.na.2013.08.020. |
[32] |
K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl. Math. Lett., 29 (2014), 46-51.
doi: 10.1016/j.aml.2013.10.014. |
[33] |
K. Yamazaki, On the global regularity of two-dimensional generalized magnetohydrodynamics system, J. Math. Anal. Appl., 416 (2014), 99-111.
doi: 10.1016/j.jmaa.2014.02.027. |
[34] |
K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system,, Appl. Math., ().
|
[35] |
K. Yamazaki, $(N-1)$ velocity components condition for the generalized MHD system in $N$-dimension, Kinet. Relat. Models, 7 (2014), 779-792. |
[36] |
B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1469-1480.
doi: 10.1016/S0252-9602(10)60139-7. |
[37] |
B. Yuan, On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space, Proc. Amer. Math. Soc., 138 (2010), 2025-2036.
doi: 10.1090/S0002-9939-10-10232-9. |
[38] |
B. Yuan and L. Bai, Remarks on global regularity of 2D generalized MHD equations, J. Math. Anal. Appl., 413 (2014), 633-640.
doi: 10.1016/j.jmaa.2013.12.024. |
[39] |
J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations, Math. Meth. Appl. Sci., 31 (2008), 1113-1130.
doi: 10.1002/mma.967. |
[1] |
Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure and Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583 |
[2] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
[3] |
Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439 |
[4] |
Kazuo Yamazaki. Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 913-938. doi: 10.3934/dcdsb.2018048 |
[5] |
Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations and Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019 |
[6] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6339-6357. doi: 10.3934/dcdsb.2021021 |
[7] |
Xin Zhong. Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. Communications on Pure and Applied Analysis, 2022, 21 (2) : 493-515. doi: 10.3934/cpaa.2021185 |
[8] |
Zhi-Ying Sun, Lan Huang, Xin-Guang Yang. Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28 (2) : 861-878. doi: 10.3934/era.2020045 |
[9] |
Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090 |
[10] |
Yang Liu, Nan Zhou, Renying Guo. Global solvability to the 3D incompressible magneto-micropolar system with vacuum. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022061 |
[11] |
Lan Huang, Zhiying Sun, Xin-Guang Yang, Alain Miranville. Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1595-1620. doi: 10.3934/cpaa.2022033 |
[12] |
Bo-Qing Dong, Jiahong Wu, Xiaojing Xu, Zhuan Ye. Global regularity for the 2D micropolar equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4133-4162. doi: 10.3934/dcds.2018180 |
[13] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6017-6026. doi: 10.3934/dcdsb.2020377 |
[14] |
Xin Zhong. Global strong solution to the nonhomogeneous micropolar fluid equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021296 |
[15] |
Haibo Cui, Junpei Gao, Lei Yao. Asymptotic behavior of the one-dimensional compressible micropolar fluid model. Electronic Research Archive, 2021, 29 (2) : 2063-2075. doi: 10.3934/era.2020105 |
[16] |
Haibo Cui, Haiyan Yin. Stability of the composite wave for the inflow problem on the micropolar fluid model. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1265-1292. doi: 10.3934/cpaa.2017062 |
[17] |
Yong Zhou, Jishan Fan. Regularity criteria of strong solutions to a problem of magneto-elastic interactions. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1697-1704. doi: 10.3934/cpaa.2010.9.1697 |
[18] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[19] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210 |
[20] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]