May  2015, 35(5): 2193-2207. doi: 10.3934/dcds.2015.35.2193

Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity

1. 

Department of Mathematics, Washington State University, Pullman, WA 99164-3113

Received  January 2014 Revised  October 2014 Published  December 2014

We study the two-dimensional magneto-micropolar fluid system. Making use of the structure of the system, we show that with zero angular viscosity the solution triple remains smooth for all time.
Citation: Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193
References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions,, Int. J. Engng. Sci., 12 (1974), 657.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226 (2011), 1803.  doi: 10.1016/j.aim.2010.08.017.  Google Scholar

[4]

C. Cao, J. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion,, SIAM J. Math. Anal., 46 (2014), 588.  doi: 10.1137/130937718.  Google Scholar

[5]

M. Chen, Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity,, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 929.  doi: 10.1016/S0252-9602(13)60051-X.  Google Scholar

[6]

Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces,, J. Differential Equations, 252 (2012), 2698.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[7]

J.-Y. Chemin, Perfect Incompressible Fluids,, Clarendon Press, (1998).   Google Scholar

[8]

B.-Q. Dong and Z.-M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3245862.  Google Scholar

[9]

B.-Q. Dong and Z.-M. Chen, Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows,, Discrete Contin. Dyn. Syst., 23 (2009), 765.  doi: 10.3934/dcds.2009.23.765.  Google Scholar

[10]

B.Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows,, Math. Methods Appl. Sci., 34 (2011), 595.  doi: 10.1002/mma.1383.  Google Scholar

[11]

B.-Q. Dong and W. Zhang, On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces,, Nonlinear Anal., 73 (2010), 2334.  doi: 10.1016/j.na.2010.06.029.  Google Scholar

[12]

B.-Q. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity,, J. Differential Equations, 249 (2010), 200.  doi: 10.1016/j.jde.2010.03.016.  Google Scholar

[13]

A. C. Eringen, Simple microfluids,, Int. Engng. Sci., 2 (1964), 205.  doi: 10.1016/0020-7225(64)90005-9.  Google Scholar

[14]

A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16 (1966), 1.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[15]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Engng. Sci., 15 (1977), 105.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[16]

H. Inoue, K. Matsuura and M. Ŏtani, Strong solutions of magneto-micropolar fluid equation,, in Discrete and continuous dynamical systems, (2002), 439.   Google Scholar

[17]

Q. Jiu and J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion,, Z. Angew. Math. Phys., (2014), 1.  doi: 10.1007/s00033-014-0415-8.  Google Scholar

[18]

G. Lukaszewicz, On nonstationary flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 12 (1988), 83.   Google Scholar

[19]

G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 13 (1989), 105.  doi: 10.2307/2152750.  Google Scholar

[20]

G. Lukaszewicz, Micropolar Fluids, Theory and Applications,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[21]

E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions,, Abstr. Appl. Anal., 4 (1999), 109.  doi: 10.1155/S1085337599000287.  Google Scholar

[22]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions,, Math. Nachr., 188 (1997), 301.  doi: 10.1002/mana.19971880116.  Google Scholar

[23]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[24]

C. V. Tran, X. Yu and Z. Zhai, On global regularity of 2D generalized magnetohydrodynamics equations,, J. Differential Equations, 254 (2013), 4194.  doi: 10.1016/j.jde.2013.02.016.  Google Scholar

[25]

Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations,, Bound. Value Probl., 2013 (2013).  doi: 10.1186/1687-2770-2013-58.  Google Scholar

[26]

J. Wu, The generalized MHD equations,, J. Differential Equations, 195 (2003), 284.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

[27]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar

[28]

Z. Xiang and H. Yang, On the regularity criteria for the 3D magneto-micropolar fluids in terms of one directional derivative,, Bound. Value Probl., 139 (2012).  doi: 10.1186/1687-2770-2012-139.  Google Scholar

[29]

L. Xue, Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations,, Math. Methods Appl. Sci., 34 (2011), 1760.  doi: 10.1002/mma.1491.  Google Scholar

[30]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Math. Meth. Appl. Sci., 28 (2005), 1507.  doi: 10.1002/mma.617.  Google Scholar

[31]

K. Yamazaki, Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation,, Nonliear Anal., 94 (2014), 194.  doi: 10.1016/j.na.2013.08.020.  Google Scholar

[32]

K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity,, Appl. Math. Lett., 29 (2014), 46.  doi: 10.1016/j.aml.2013.10.014.  Google Scholar

[33]

K. Yamazaki, On the global regularity of two-dimensional generalized magnetohydrodynamics system,, J. Math. Anal. Appl., 416 (2014), 99.  doi: 10.1016/j.jmaa.2014.02.027.  Google Scholar

[34]

K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system,, Appl. Math., ().   Google Scholar

[35]

K. Yamazaki, $(N-1)$ velocity components condition for the generalized MHD system in $N$-dimension,, Kinet. Relat. Models, 7 (2014), 779.   Google Scholar

[36]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1469.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[37]

B. Yuan, On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space,, Proc. Amer. Math. Soc., 138 (2010), 2025.  doi: 10.1090/S0002-9939-10-10232-9.  Google Scholar

[38]

B. Yuan and L. Bai, Remarks on global regularity of 2D generalized MHD equations,, J. Math. Anal. Appl., 413 (2014), 633.  doi: 10.1016/j.jmaa.2013.12.024.  Google Scholar

[39]

J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations,, Math. Meth. Appl. Sci., 31 (2008), 1113.  doi: 10.1002/mma.967.  Google Scholar

show all references

References:
[1]

G. Ahmadi and M. Shahinpoor, Universal stability of magneto-micropolar fluid motions,, Int. J. Engng. Sci., 12 (1974), 657.  doi: 10.1016/0020-7225(74)90042-1.  Google Scholar

[2]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,, Adv. Math., 226 (2011), 1803.  doi: 10.1016/j.aim.2010.08.017.  Google Scholar

[4]

C. Cao, J. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion,, SIAM J. Math. Anal., 46 (2014), 588.  doi: 10.1137/130937718.  Google Scholar

[5]

M. Chen, Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity,, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 929.  doi: 10.1016/S0252-9602(13)60051-X.  Google Scholar

[6]

Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces,, J. Differential Equations, 252 (2012), 2698.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[7]

J.-Y. Chemin, Perfect Incompressible Fluids,, Clarendon Press, (1998).   Google Scholar

[8]

B.-Q. Dong and Z.-M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3245862.  Google Scholar

[9]

B.-Q. Dong and Z.-M. Chen, Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows,, Discrete Contin. Dyn. Syst., 23 (2009), 765.  doi: 10.3934/dcds.2009.23.765.  Google Scholar

[10]

B.Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows,, Math. Methods Appl. Sci., 34 (2011), 595.  doi: 10.1002/mma.1383.  Google Scholar

[11]

B.-Q. Dong and W. Zhang, On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces,, Nonlinear Anal., 73 (2010), 2334.  doi: 10.1016/j.na.2010.06.029.  Google Scholar

[12]

B.-Q. Dong and Z. Zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity,, J. Differential Equations, 249 (2010), 200.  doi: 10.1016/j.jde.2010.03.016.  Google Scholar

[13]

A. C. Eringen, Simple microfluids,, Int. Engng. Sci., 2 (1964), 205.  doi: 10.1016/0020-7225(64)90005-9.  Google Scholar

[14]

A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16 (1966), 1.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[15]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Engng. Sci., 15 (1977), 105.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[16]

H. Inoue, K. Matsuura and M. Ŏtani, Strong solutions of magneto-micropolar fluid equation,, in Discrete and continuous dynamical systems, (2002), 439.   Google Scholar

[17]

Q. Jiu and J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion,, Z. Angew. Math. Phys., (2014), 1.  doi: 10.1007/s00033-014-0415-8.  Google Scholar

[18]

G. Lukaszewicz, On nonstationary flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 12 (1988), 83.   Google Scholar

[19]

G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 13 (1989), 105.  doi: 10.2307/2152750.  Google Scholar

[20]

G. Lukaszewicz, Micropolar Fluids, Theory and Applications,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[21]

E. E. Ortega-Torres and M. A. Rojas-Medar, Magneto-micropolar fluid motion: Global existence of strong solutions,, Abstr. Appl. Anal., 4 (1999), 109.  doi: 10.1155/S1085337599000287.  Google Scholar

[22]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions,, Math. Nachr., 188 (1997), 301.  doi: 10.1002/mana.19971880116.  Google Scholar

[23]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, Comm. Pure Appl. Math., 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[24]

C. V. Tran, X. Yu and Z. Zhai, On global regularity of 2D generalized magnetohydrodynamics equations,, J. Differential Equations, 254 (2013), 4194.  doi: 10.1016/j.jde.2013.02.016.  Google Scholar

[25]

Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations,, Bound. Value Probl., 2013 (2013).  doi: 10.1186/1687-2770-2013-58.  Google Scholar

[26]

J. Wu, The generalized MHD equations,, J. Differential Equations, 195 (2003), 284.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

[27]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar

[28]

Z. Xiang and H. Yang, On the regularity criteria for the 3D magneto-micropolar fluids in terms of one directional derivative,, Bound. Value Probl., 139 (2012).  doi: 10.1186/1687-2770-2012-139.  Google Scholar

[29]

L. Xue, Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations,, Math. Methods Appl. Sci., 34 (2011), 1760.  doi: 10.1002/mma.1491.  Google Scholar

[30]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Math. Meth. Appl. Sci., 28 (2005), 1507.  doi: 10.1002/mma.617.  Google Scholar

[31]

K. Yamazaki, Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation,, Nonliear Anal., 94 (2014), 194.  doi: 10.1016/j.na.2013.08.020.  Google Scholar

[32]

K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity,, Appl. Math. Lett., 29 (2014), 46.  doi: 10.1016/j.aml.2013.10.014.  Google Scholar

[33]

K. Yamazaki, On the global regularity of two-dimensional generalized magnetohydrodynamics system,, J. Math. Anal. Appl., 416 (2014), 99.  doi: 10.1016/j.jmaa.2014.02.027.  Google Scholar

[34]

K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system,, Appl. Math., ().   Google Scholar

[35]

K. Yamazaki, $(N-1)$ velocity components condition for the generalized MHD system in $N$-dimension,, Kinet. Relat. Models, 7 (2014), 779.   Google Scholar

[36]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1469.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[37]

B. Yuan, On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space,, Proc. Amer. Math. Soc., 138 (2010), 2025.  doi: 10.1090/S0002-9939-10-10232-9.  Google Scholar

[38]

B. Yuan and L. Bai, Remarks on global regularity of 2D generalized MHD equations,, J. Math. Anal. Appl., 413 (2014), 633.  doi: 10.1016/j.jmaa.2013.12.024.  Google Scholar

[39]

J. Yuan, Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations,, Math. Meth. Appl. Sci., 31 (2008), 1113.  doi: 10.1002/mma.967.  Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[7]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[13]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (26)

Other articles
by authors

[Back to Top]