May  2015, 35(5): 2227-2272. doi: 10.3934/dcds.2015.35.2227

Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems

1. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071

Received  June 2012 Revised  January 2013 Published  December 2014

In this paper, for any positive integer $n$, we study the Maslov-type index theory of $i_{L_0}$, $i_{L_1}$ and $i_{\sqrt{-1}}^{L_0}$ with $L_0 = \{0\}\times \mathbf{R}^n\subset \mathbf{R}^{2n}$ and $L_1=\mathbf{R}^n\times \{0\} \subset \mathbf{R}^{2n}$. As applications we study the minimal period problems for brake orbits of nonlinear autonomous reversible Hamiltonian systems. For first order nonlinear autonomous reversible Hamiltonian systems in $\mathbf{R}^{2n}$, which are semipositive, and superquadratic at zero and infinity, we prove that for any $T>0$, the considered Hamiltonian systems possesses a nonconstant $T$ periodic brake orbit $X_T$ with minimal period no less than $\frac{T}{2n+2}$. Furthermore if $\int_0^T H''_{22}(x_T(t))dt$ is positive definite, then the minimal period of $x_T$ belongs to $\{T,\;\frac{T}{2}\}$. Moreover, if the Hamiltonian system is even, we prove that for any $T>0$, the considered even semipositive Hamiltonian systems possesses a nonconstant symmetric brake orbit with minimal period belonging to $\{T,\;\frac{T}{3}\}$.
Citation: Duanzhi Zhang. Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2227-2272. doi: 10.3934/dcds.2015.35.2227
References:
[1]

A. Ambrosetti, V. Benci and Y. Long, A note on the existence of multiple brake orbits, Nonlinear Anal. T. M. A., 21 (1993), 643-649. doi: 10.1016/0362-546X(93)90061-V.

[2]

A. Ambrosetti and V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in a potential well, Ann. I. H. P. Anal. non linéaire, 4 (1987), 275-296.

[3]

A. Ambrosetti and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann., 255 (1981), 405-421. doi: 10.1007/BF01450713.

[4]

T. An and Y. Long, Index theories of second order Hamiltonian systems, Nonlinear Anal., 34 (1998), 585-592. doi: 10.1016/S0362-546X(97)00572-5.

[5]

V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. I. H. P. Analyse Nonl., 1 (1984), 401-412.

[6]

V. Benci and F. Giannoni, A new proof of the existence of a brake orbit. In "Advanced Topics in the Theory of Dynamical Systems", Notes Rep. Math. Sci. Eng., 6 (1989), 37-49.

[7]

S. Bolotin, Libration motions of natural dynamical systems, Vestnik Moskov Univ. Ser. I. Mat. Mekh., 6 (1978), 72-77 (in Russian).

[8]

S. Bolotin and V. V. Kozlov, Librations with many degrees of freedom, J. Appl. Math. Mech., 42 (1978), 245-250 (in Russian).

[9]

B. Booss and K. Furutani, The Maslov-type index - a functional analytical definition and the spectral flow formula, Tokyo J. Math., 21 (1998), 1-34. doi: 10.3836/tjm/1270041982.

[10]

B. Booss and C. Zhu, General spectral flow formula for fixed maximal domain, Central Eur. J. Math., 3 (2005), 558-577. doi: 10.2478/BF02475923.

[11]

S. E. Cappell, R. Lee and E. Y. Miller, On the Maslov-type index, Comm. Pure Appl. Math., 47 (1994), 121-186. doi: 10.1002/cpa.3160470202.

[12]

C. Conley and E. Zehnder, Maslov-type index theory for flows and periodix solutions for Hamiltonian equations, Commu. Pure. Appl. Math., 37 (1984), 207-253. doi: 10.1002/cpa.3160370204.

[13]

D. Dong and Y. Long, The Iteration Theory of the Maslov-type Index Theory with Applications to Nonlinear Hamiltonian Systems, Trans. Amer. Math. Soc., 349 (1997), 2619-2661. doi: 10.1090/S0002-9947-97-01718-2.

[14]

J. J. Duistermaat, Fourier Integral Operators, Birkhäuser, Basel, 1996.

[15]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Spring-Verlag. Berlin, 1990. doi: 10.1007/978-3-642-74331-3.

[16]

I. Ekeland and E. Hofer, Periodic solutions with percribed period for convex autonomous Hamiltonian systems, Invent. Math., 81 (1985), 155-188. doi: 10.1007/BF01388776.

[17]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal., 27 (1996), 811-820. doi: 10.1016/0362-546X(95)00077-9.

[18]

G. Fei, S.-K. Kim and T. Wang, Minimal Period Estimates of Period Solutions for Superquadratic Hamiltonian Syetems, J. Math. Anal. Appl., 238 (1999), 216-233. doi: 10.1006/jmaa.1999.6527.

[19]

G. Fei, S.-K. Kim and T. Wang, Solutions of minimal period for even classical Hamiltonian systems, Nonlinear Anal., 43 (2001), 363-375. doi: 10.1016/S0362-546X(99)00199-6.

[20]

M. Girardi and M. Matzeu, Some results on solutions of minimal period to superquadratic Hamiltonian equations, Nonlinear Anal., 7 (1983), 475-482. doi: 10.1016/0362-546X(83)90039-1.

[21]

M. M. Girardi and M. Matzeu, Solutions of minimal period for a class of nonconvex Hamiltonian systems and applications to the fixed energy problem, Nonlinear Anal. TMA., 10 (1986), 371-382. doi: 10.1016/0362-546X(86)90134-3.

[22]

M. Girardi and M. Matzeu, Periodic solutions of convex Hamiltonian systems with a quadratic growth at the origin and superquadratic at infinity, Ann. Math. Pura ed App., 147 (1987), 21-72. doi: 10.1007/BF01762410.

[23]

M. Girardi and M. Matzeu, Dual Morse index estimates for periodic solutions of Hamiltonian systems in some nonconvex superquadratic case, Nonlinear Anal. TMA., 17 (1991), 481-497. doi: 10.1016/0362-546X(91)90143-O.

[24]

H. Gluck and W. Ziller, Existence of periodic solutions of conservtive systems, Seminar on Minimal Submanifolds, Princeton University Press, (1983), 65-98.

[25]

E. W. C. van Groesen, Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy, J. Math. Anal. Appl., 132 (1988), 1-12. doi: 10.1016/0022-247X(88)90039-X.

[26]

K. Hayashi, Periodic solution of classical Hamiltonian systems, Tokyo J. Math., 6 (1983), 473-486. doi: 10.3836/tjm/1270213886.

[27]

C. Liu, A note on the monotonicity of Maslov-type index of Linear Hamiltonian systems with applications, Proceedings of the royal Society of Edinburg, 135 (2005), 1263-1277. doi: 10.1017/S0308210500004364.

[28]

C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud., 7 (2007), 131-161.

[29]

C. Liu, Asymptotically linear hamiltonian systems with largrangian boundary conditions, Pacific J. Math., 232 (2007), 233-255. doi: 10.2140/pjm.2007.232.233.

[30]

C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst., 27 (2010), 337-355. doi: 10.3934/dcds.2010.27.337.

[31]

C. Liu and Y. Long, An optimal increasing estimate for iterated Maslov-type indices, Chinese Sci. Bull., 42 (1997), 2275-2277.

[32]

C. Liu and Y. Long, Iteration inequalities of the Maslov-type index theory with applications, J. Diff. Equa., 165 (2000), 355-376. doi: 10.1006/jdeq.2000.3775.

[33]

C. Liu and D. Zhang, An iteration theory of Maslov-type index for symplectic paths associated with a Lagranfian subspace and Multiplicity of brake orbits in bounded convex symmetric domains, arXiv:0908.0021 [math. SG].

[34]

Y. Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Science in China, Series A., 7 (1990), 673-682 (Chinese edition), 33 (1990), 1409-1419.(English edition)

[35]

Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. I. H. P. Anal. non linéaire, 10 (1993), 605-626.

[36]

Y. Long, The minimal period problem of period solutions for autonomous superquadratic second Hamiltonian systems, J. Diff. Equa., 111 (1994), 147-174. doi: 10.1006/jdeq.1994.1079.

[37]

Y. Long, On the minimal period for periodic solution problem of nonlinear Hamiltonian systems, Chinese Ann. of math., 18 (1997), 481-484.

[38]

Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113-149. doi: 10.2140/pjm.1999.187.113.

[39]

Y. long, Index Theory for Symplectic Paths with Applications, Birkhäuser, Basel, 2002. doi: 10.1007/978-3-0348-8175-3.

[40]

Y. Long, D. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Advances in Math., 203 (2006), 568-635. doi: 10.1016/j.aim.2005.05.005.

[41]

P. H. Rabinowitz, Periodic solution of Hamiltonian systems, Commu. Pure Appl. Math., 31 (1978), 157-184. doi: 10.1002/cpa.3160310203.

[42]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., A.M.S., Providence, 45 (1986), 287-306.

[43]

P. H. Rabinowitz, On the existence of periodic solutions for a class of symmetric Hamiltonian systems, Nonlinear Anal. T. M. A., 11 (1987), 599-611. doi: 10.1016/0362-546X(87)90075-7.

[44]

J. Robbin and D. Salamon, The Maslov indices for paths, Topology, 32 (1993), 827-844. doi: 10.1016/0040-9383(93)90052-W.

[45]

H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z., 51 (1948), 197-216. doi: 10.1007/BF01291002.

[46]

A. Szulkin, Cohomology and Morse theory for strongly indefinite functions, Math. Z., 209 (1992), 375-418. doi: 10.1007/BF02570842.

[47]

Y. Xiao, Periodic Solutions with Prescribed Minimal Period for Second Order Hamiltonian Systems with Even Potentials, Acta Math. Sinica, English Series, 26 (2010), 825-830. doi: 10.1007/s10114-009-8305-2.

[48]

D. Zhang, Symmetric period solutions with prescribed period for even autonomous semipositive hamiltonian systems, Sci. China Math., 57 (2014), 81-96. doi: 10.1007/s11425-013-4598-9.

[49]

D. Zhang, Maslov-type index and brake orbits in nonlinear Hamiltonian systems, Science in China, 50 (2007), 761-772. doi: 10.1007/s11425-007-0034-3.

[50]

C. Zhu and Y. Long, Maslov index theory for symplectic paths and spectral flow(I), Chinese Ann. of Math., 20 (1999), 413-424. doi: 10.1142/S0252959999000485.

show all references

References:
[1]

A. Ambrosetti, V. Benci and Y. Long, A note on the existence of multiple brake orbits, Nonlinear Anal. T. M. A., 21 (1993), 643-649. doi: 10.1016/0362-546X(93)90061-V.

[2]

A. Ambrosetti and V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in a potential well, Ann. I. H. P. Anal. non linéaire, 4 (1987), 275-296.

[3]

A. Ambrosetti and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann., 255 (1981), 405-421. doi: 10.1007/BF01450713.

[4]

T. An and Y. Long, Index theories of second order Hamiltonian systems, Nonlinear Anal., 34 (1998), 585-592. doi: 10.1016/S0362-546X(97)00572-5.

[5]

V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. I. H. P. Analyse Nonl., 1 (1984), 401-412.

[6]

V. Benci and F. Giannoni, A new proof of the existence of a brake orbit. In "Advanced Topics in the Theory of Dynamical Systems", Notes Rep. Math. Sci. Eng., 6 (1989), 37-49.

[7]

S. Bolotin, Libration motions of natural dynamical systems, Vestnik Moskov Univ. Ser. I. Mat. Mekh., 6 (1978), 72-77 (in Russian).

[8]

S. Bolotin and V. V. Kozlov, Librations with many degrees of freedom, J. Appl. Math. Mech., 42 (1978), 245-250 (in Russian).

[9]

B. Booss and K. Furutani, The Maslov-type index - a functional analytical definition and the spectral flow formula, Tokyo J. Math., 21 (1998), 1-34. doi: 10.3836/tjm/1270041982.

[10]

B. Booss and C. Zhu, General spectral flow formula for fixed maximal domain, Central Eur. J. Math., 3 (2005), 558-577. doi: 10.2478/BF02475923.

[11]

S. E. Cappell, R. Lee and E. Y. Miller, On the Maslov-type index, Comm. Pure Appl. Math., 47 (1994), 121-186. doi: 10.1002/cpa.3160470202.

[12]

C. Conley and E. Zehnder, Maslov-type index theory for flows and periodix solutions for Hamiltonian equations, Commu. Pure. Appl. Math., 37 (1984), 207-253. doi: 10.1002/cpa.3160370204.

[13]

D. Dong and Y. Long, The Iteration Theory of the Maslov-type Index Theory with Applications to Nonlinear Hamiltonian Systems, Trans. Amer. Math. Soc., 349 (1997), 2619-2661. doi: 10.1090/S0002-9947-97-01718-2.

[14]

J. J. Duistermaat, Fourier Integral Operators, Birkhäuser, Basel, 1996.

[15]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Spring-Verlag. Berlin, 1990. doi: 10.1007/978-3-642-74331-3.

[16]

I. Ekeland and E. Hofer, Periodic solutions with percribed period for convex autonomous Hamiltonian systems, Invent. Math., 81 (1985), 155-188. doi: 10.1007/BF01388776.

[17]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal., 27 (1996), 811-820. doi: 10.1016/0362-546X(95)00077-9.

[18]

G. Fei, S.-K. Kim and T. Wang, Minimal Period Estimates of Period Solutions for Superquadratic Hamiltonian Syetems, J. Math. Anal. Appl., 238 (1999), 216-233. doi: 10.1006/jmaa.1999.6527.

[19]

G. Fei, S.-K. Kim and T. Wang, Solutions of minimal period for even classical Hamiltonian systems, Nonlinear Anal., 43 (2001), 363-375. doi: 10.1016/S0362-546X(99)00199-6.

[20]

M. Girardi and M. Matzeu, Some results on solutions of minimal period to superquadratic Hamiltonian equations, Nonlinear Anal., 7 (1983), 475-482. doi: 10.1016/0362-546X(83)90039-1.

[21]

M. M. Girardi and M. Matzeu, Solutions of minimal period for a class of nonconvex Hamiltonian systems and applications to the fixed energy problem, Nonlinear Anal. TMA., 10 (1986), 371-382. doi: 10.1016/0362-546X(86)90134-3.

[22]

M. Girardi and M. Matzeu, Periodic solutions of convex Hamiltonian systems with a quadratic growth at the origin and superquadratic at infinity, Ann. Math. Pura ed App., 147 (1987), 21-72. doi: 10.1007/BF01762410.

[23]

M. Girardi and M. Matzeu, Dual Morse index estimates for periodic solutions of Hamiltonian systems in some nonconvex superquadratic case, Nonlinear Anal. TMA., 17 (1991), 481-497. doi: 10.1016/0362-546X(91)90143-O.

[24]

H. Gluck and W. Ziller, Existence of periodic solutions of conservtive systems, Seminar on Minimal Submanifolds, Princeton University Press, (1983), 65-98.

[25]

E. W. C. van Groesen, Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy, J. Math. Anal. Appl., 132 (1988), 1-12. doi: 10.1016/0022-247X(88)90039-X.

[26]

K. Hayashi, Periodic solution of classical Hamiltonian systems, Tokyo J. Math., 6 (1983), 473-486. doi: 10.3836/tjm/1270213886.

[27]

C. Liu, A note on the monotonicity of Maslov-type index of Linear Hamiltonian systems with applications, Proceedings of the royal Society of Edinburg, 135 (2005), 1263-1277. doi: 10.1017/S0308210500004364.

[28]

C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud., 7 (2007), 131-161.

[29]

C. Liu, Asymptotically linear hamiltonian systems with largrangian boundary conditions, Pacific J. Math., 232 (2007), 233-255. doi: 10.2140/pjm.2007.232.233.

[30]

C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst., 27 (2010), 337-355. doi: 10.3934/dcds.2010.27.337.

[31]

C. Liu and Y. Long, An optimal increasing estimate for iterated Maslov-type indices, Chinese Sci. Bull., 42 (1997), 2275-2277.

[32]

C. Liu and Y. Long, Iteration inequalities of the Maslov-type index theory with applications, J. Diff. Equa., 165 (2000), 355-376. doi: 10.1006/jdeq.2000.3775.

[33]

C. Liu and D. Zhang, An iteration theory of Maslov-type index for symplectic paths associated with a Lagranfian subspace and Multiplicity of brake orbits in bounded convex symmetric domains, arXiv:0908.0021 [math. SG].

[34]

Y. Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Science in China, Series A., 7 (1990), 673-682 (Chinese edition), 33 (1990), 1409-1419.(English edition)

[35]

Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. I. H. P. Anal. non linéaire, 10 (1993), 605-626.

[36]

Y. Long, The minimal period problem of period solutions for autonomous superquadratic second Hamiltonian systems, J. Diff. Equa., 111 (1994), 147-174. doi: 10.1006/jdeq.1994.1079.

[37]

Y. Long, On the minimal period for periodic solution problem of nonlinear Hamiltonian systems, Chinese Ann. of math., 18 (1997), 481-484.

[38]

Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113-149. doi: 10.2140/pjm.1999.187.113.

[39]

Y. long, Index Theory for Symplectic Paths with Applications, Birkhäuser, Basel, 2002. doi: 10.1007/978-3-0348-8175-3.

[40]

Y. Long, D. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Advances in Math., 203 (2006), 568-635. doi: 10.1016/j.aim.2005.05.005.

[41]

P. H. Rabinowitz, Periodic solution of Hamiltonian systems, Commu. Pure Appl. Math., 31 (1978), 157-184. doi: 10.1002/cpa.3160310203.

[42]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., A.M.S., Providence, 45 (1986), 287-306.

[43]

P. H. Rabinowitz, On the existence of periodic solutions for a class of symmetric Hamiltonian systems, Nonlinear Anal. T. M. A., 11 (1987), 599-611. doi: 10.1016/0362-546X(87)90075-7.

[44]

J. Robbin and D. Salamon, The Maslov indices for paths, Topology, 32 (1993), 827-844. doi: 10.1016/0040-9383(93)90052-W.

[45]

H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z., 51 (1948), 197-216. doi: 10.1007/BF01291002.

[46]

A. Szulkin, Cohomology and Morse theory for strongly indefinite functions, Math. Z., 209 (1992), 375-418. doi: 10.1007/BF02570842.

[47]

Y. Xiao, Periodic Solutions with Prescribed Minimal Period for Second Order Hamiltonian Systems with Even Potentials, Acta Math. Sinica, English Series, 26 (2010), 825-830. doi: 10.1007/s10114-009-8305-2.

[48]

D. Zhang, Symmetric period solutions with prescribed period for even autonomous semipositive hamiltonian systems, Sci. China Math., 57 (2014), 81-96. doi: 10.1007/s11425-013-4598-9.

[49]

D. Zhang, Maslov-type index and brake orbits in nonlinear Hamiltonian systems, Science in China, 50 (2007), 761-772. doi: 10.1007/s11425-007-0034-3.

[50]

C. Zhu and Y. Long, Maslov index theory for symplectic paths and spectral flow(I), Chinese Ann. of Math., 20 (1999), 413-424. doi: 10.1142/S0252959999000485.

[1]

Chungen Liu. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 337-355. doi: 10.3934/dcds.2010.27.337

[2]

André Vanderbauwhede. Continuation and bifurcation of multi-symmetric solutions in reversible Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 359-363. doi: 10.3934/dcds.2013.33.359

[3]

Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure and Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166

[4]

Zhongjie Liu, Duanzhi Zhang. Brake orbits on compact symmetric dynamically convex reversible hypersurfaces on $ \mathbb{R}^\text{2n} $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4187-4206. doi: 10.3934/dcds.2019169

[5]

B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217

[6]

Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354

[7]

Yavdat Il'yasov, Nadir Sari. Solutions of minimal period for a Hamiltonian system with a changing sign potential. Communications on Pure and Applied Analysis, 2005, 4 (1) : 175-185. doi: 10.3934/cpaa.2005.4.175

[8]

G. Chen, C. Li, C. Liu, Jaume Llibre. The cyclicity of period annuli of some classes of reversible quadratic systems. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 157-177. doi: 10.3934/dcds.2006.16.157

[9]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[10]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047

[11]

K. Tintarev. Critical values and minimal periods for autonomous Hamiltonian systems. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 389-400. doi: 10.3934/dcds.1995.1.389

[12]

Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure and Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703

[13]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[14]

Peter Howard, Alim Sukhtayev. The Maslov and Morse indices for Sturm-Liouville systems on the half-line. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 983-1012. doi: 10.3934/dcds.2020068

[15]

Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51

[16]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[17]

Linping Peng, Yazhi Lei. The cyclicity of the period annulus of a quadratic reversible system with a hemicycle. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 873-890. doi: 10.3934/dcds.2011.30.873

[18]

Yi Shao, Yulin Zhao. The cyclicity of the period annulus of a class of quadratic reversible system. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1269-1283. doi: 10.3934/cpaa.2012.11.1269

[19]

Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249

[20]

Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]