June  2015, 35(6): 2423-2442. doi: 10.3934/dcds.2015.35.2423

On a Cahn-Hilliard type phase field system related to tumor growth

1. 

Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia

2. 

Laboratoire de Mathématiques, CNRS et Université de Paris-Sud, 91405 Orsay

Received  January 2014 Revised  April 2014 Published  December 2014

The paper deals with a phase field system of Cahn-Hilliard type. For positive viscosity coefficients, the authors prove an existence and uniqueness result and study the long time behavior of the solution by assuming the nonlinearities to be rather general. In a more restricted setting, the limit as the viscosity coefficients tend to zero is investigated as well.
Citation: Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423
References:
[1]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach spaces,, Noordhoff International Publishing, (1976).

[2]

H. Brezis, Opérateurs Maximaux Monotones Et Semi-groupes de Contractions Dans Les Espaces de Hilbert,, North-Holland Math. Stud. 5, 5 (1973).

[3]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102.

[4]

V. Cristini, H. B. Frieboes, X. Li, J. S. Lowengrub, P. Macklin, S. Sanga, S. M. Wise and X. Zheng, Nonlinear modeling and simulation of tumor growth,, in Selected Topics in Cancer Modeling: Genesis, (2008), 113.

[5]

V. Cristini, X. Li, J. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching,, J. Math. Biol., 58 (2009), 723. doi: 10.1007/s00285-008-0215-x.

[6]

V. Cristini and J. S. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach,, Cambridge University Press, (2010). doi: 10.1017/CBO9780511781452.

[7]

V. Cristini, J. S. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth,, J. Math. Biol., 46 (2003), 191. doi: 10.1007/s00285-002-0174-6.

[8]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193. doi: 10.1007/s00209-007-0120-9.

[9]

C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis,, J. Differential Equations, 128 (1996), 387. doi: 10.1006/jdeq.1996.0101.

[10]

C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation,, Arch. Rational Mech. Anal., 96 (1986), 339. doi: 10.1007/BF00251803.

[11]

S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumor growth,, preprint arXiv:1405.3446 [math.AP] (2014), (2014), 1.

[12]

A. Hawkins-Daarud, K. G. van der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model,, Int. J. Numer. Methods Biomed. Eng., 28 (2012), 3. doi: 10.1002/cnm.1467.

[13]

D. Hilhorst, J. Kampmann, T. N. Nguyen and K. G. van der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model,, preprint (2013), (2013), 1.

[14]

J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes Aux Limites Non Linéaires,, Dunod; Gauthier-Villars, (1969).

[15]

J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modeling of cancer: Bridging the gap between cells and tumors,, Nonlinearity, 23 (2010). doi: 10.1088/0951-7715/23/1/R01.

[16]

J. T. Oden, A. Hawkins and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling,, Math. Models Methods Appl. Sci., 20 (2010), 477. doi: 10.1142/S0218202510004313.

[17]

R. E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations,, Math. Surveys Monogr. 49, 49 (1997).

[18]

J. Simon, Compact sets in the space $L^p(0,T; B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65. doi: 10.1007/BF01762360.

[19]

S. Zheng, Nonlinear Evolution Equations,, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math. 133, 133 (2004). doi: 10.1201/9780203492222.

show all references

References:
[1]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach spaces,, Noordhoff International Publishing, (1976).

[2]

H. Brezis, Opérateurs Maximaux Monotones Et Semi-groupes de Contractions Dans Les Espaces de Hilbert,, North-Holland Math. Stud. 5, 5 (1973).

[3]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102.

[4]

V. Cristini, H. B. Frieboes, X. Li, J. S. Lowengrub, P. Macklin, S. Sanga, S. M. Wise and X. Zheng, Nonlinear modeling and simulation of tumor growth,, in Selected Topics in Cancer Modeling: Genesis, (2008), 113.

[5]

V. Cristini, X. Li, J. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching,, J. Math. Biol., 58 (2009), 723. doi: 10.1007/s00285-008-0215-x.

[6]

V. Cristini and J. S. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach,, Cambridge University Press, (2010). doi: 10.1017/CBO9780511781452.

[7]

V. Cristini, J. S. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth,, J. Math. Biol., 46 (2003), 191. doi: 10.1007/s00285-002-0174-6.

[8]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193. doi: 10.1007/s00209-007-0120-9.

[9]

C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis,, J. Differential Equations, 128 (1996), 387. doi: 10.1006/jdeq.1996.0101.

[10]

C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation,, Arch. Rational Mech. Anal., 96 (1986), 339. doi: 10.1007/BF00251803.

[11]

S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumor growth,, preprint arXiv:1405.3446 [math.AP] (2014), (2014), 1.

[12]

A. Hawkins-Daarud, K. G. van der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model,, Int. J. Numer. Methods Biomed. Eng., 28 (2012), 3. doi: 10.1002/cnm.1467.

[13]

D. Hilhorst, J. Kampmann, T. N. Nguyen and K. G. van der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model,, preprint (2013), (2013), 1.

[14]

J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes Aux Limites Non Linéaires,, Dunod; Gauthier-Villars, (1969).

[15]

J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modeling of cancer: Bridging the gap between cells and tumors,, Nonlinearity, 23 (2010). doi: 10.1088/0951-7715/23/1/R01.

[16]

J. T. Oden, A. Hawkins and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling,, Math. Models Methods Appl. Sci., 20 (2010), 477. doi: 10.1142/S0218202510004313.

[17]

R. E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations,, Math. Surveys Monogr. 49, 49 (1997).

[18]

J. Simon, Compact sets in the space $L^p(0,T; B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65. doi: 10.1007/BF01762360.

[19]

S. Zheng, Nonlinear Evolution Equations,, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math. 133, 133 (2004). doi: 10.1201/9780203492222.

[1]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[2]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[3]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[4]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[5]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[6]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[7]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[8]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[9]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

[10]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[11]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[12]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations & Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[13]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[14]

Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405

[15]

Pierluigi Colli, Gianni Gilardi, Philippe Laurençot, Amy Novick-Cohen. Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 375-390. doi: 10.3934/dcds.1999.5.375

[16]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[17]

Pierluigi Colli, Gianni Gilardi, Paolo Podio-Guidugli, Jürgen Sprekels. An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 353-368. doi: 10.3934/dcdss.2013.6.353

[18]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[19]

Eduard Feireisl, Françoise Issard-Roch, Hana Petzeltová. Long-time behaviour and convergence towards equilibria for a conserved phase field model. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 239-252. doi: 10.3934/dcds.2004.10.239

[20]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (11)

[Back to Top]