-
Previous Article
Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior
- DCDS Home
- This Issue
-
Next Article
Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation
From compact semi-toric systems to Hamiltonian $S^1$-spaces
1. | Section de Mathématiques, EPFL, SB MATHGEOM CAG, Station 8, 1015 Lausanne, Switzerland |
2. | CAMGSD, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa, 1049-001, Portugal |
3. | Instituto de Matemática, Universidade Federal Fluminense, Rua Mário Santos Braga, 24020-240 Niteroi, RJ, Brazil |
References:
[1] |
M. F. Atiyah, Convexity and commuting hamiltonians, Bull. London Math. Soc., 14 (1982), 1-15.
doi: 10.1112/blms/14.1.1. |
[2] |
O. Babelon and B. Doucot, Higher index focus-focus singularities in the Jaynes-Cummings-Gaudin model: symplectic invariants and monodromy,, preprint, ().
doi: 10.1016/j.geomphys.2014.07.011. |
[3] |
A. V. Bolsinov and A. A. Oshemkov, Singularities of integrable Hamiltonian systems, in Topological Methods in the Theory of Integrable Systems, Camb. Sci. Publ., Cambridge, 2006, 1-67. |
[4] |
M. Chaperon, Quelques outils de la théorie des actions différentiables, in Third Schnepfenried Geometry Conference, Vol. 1 (Schnepfenried, 1982), Astérisque, 107-108, Soc. Math. France, Paris, 1983, 259-275. |
[5] |
T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment, (French) [Periodic Hamiltonians and convex images of the momentum mapping], Bull. Soc. Math. France, 116 (1988), 315-339. |
[6] |
J. J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math., 33 (1980), 687-706.
doi: 10.1002/cpa.3160330602. |
[7] |
J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math., 69 (1982), 259-269.
doi: 10.1007/BF01399506. |
[8] |
L. H. Eliasson, Hamiltonian Systems with Poisson Commuting Integrals, Ph.D thesis, University of Stockholm, 1984. |
[9] |
L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case, Comment. Math. Helv., 65 (1990), 4-35.
doi: 10.1007/BF02566590. |
[10] |
A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics, Translated from the Russian by M. V. Tsaplina., Mathematics and its Applications (Soviet Series) 31, Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-009-3069-8. |
[11] |
V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math., 67 (1982), 491-513.
doi: 10.1007/BF01398933. |
[12] |
Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds, Mem. Amer. Math. Soc., 672 (1999).
doi: 10.1090/memo/0672. |
[13] |
Y. Karshon, L. Kessler and M. Pinsonnault, A compact symplectic four-manifold admits only finitely many inequivalent toric actions, J. Symplectic Geom., 5 (2007), 139-166.
doi: 10.4310/JSG.2007.v5.n2.a1. |
[14] |
Y. Karshon and S. Tolman, Centered complexity one Hamiltonian torus actions, Trans. Amer. Math. Soc., 353 (2001), 4831-4861 (electronic).
doi: 10.1090/S0002-9947-01-02799-4. |
[15] |
Y. Karshon and S. Tolman, Complete invariants for Hamiltonian torus actions with two dimensional quotients, J. Symplectic Geom., 2 (2003), 25-82.
doi: 10.4310/JSG.2004.v2.n1.a2. |
[16] |
Y. Karshon and S. Tolman, Classification of Hamiltonian torus actions with two dimensional quotients,, , ().
doi: 10.2140/gt.2014.18.669. |
[17] |
F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton University Press, 1984.
doi: 10.1007/BF01145470. |
[18] |
N. C. Leung and M. Symington, Almost toric symplectic four-manifolds, J. Symplectic Geom., 8 (2010), 143-187.
doi: 10.4310/JSG.2010.v8.n2.a2. |
[19] |
E. Miranda and N. T. Zung, Equivariant normal form for non-degenerate singular orbits of integrable Hamiltonian systems, Ann. Sci. Éc. Norm. Sup., 37 (2004), 819-839.
doi: 10.1016/j.ansens.2004.10.001. |
[20] |
Á. Pelayo and S. Vũ Ngọc, Semitoric integrable systems on symplectic 4-manifolds, Invent. Math., 177 (2009), 571-597.
doi: 10.1007/s00222-009-0190-x. |
[21] |
Á. Pelayo and S. Vũ Ngọc, Constructing integrable systems of semitoric type, Acta Math., 206 (2011), 93-125.
doi: 10.1007/s11511-011-0060-4. |
[22] |
Á. Pelayo and S. Vũ Ngọc, Symplectic theory of completely integrable Hamiltonian systems, Bull. Amer. Math. Soc. (N.S.), 48 (2011), 409-455.
doi: 10.1090/S0273-0979-2011-01338-6. |
[23] |
D. A. Sadovskií and B. I. Zĥilinskií, Monodromy, diabolic points and angular momentum coupling, Phys. Lett. A., 256 (1999), 235-244.
doi: 10.1016/S0375-9601(99)00229-7. |
[24] |
M. Symington, Four dimensions from two in symplectic topology, in Topology and Geometry of Manifolds (Athens, GA), Proc. Sympos. Pure Math., 71, Amer. Math. Soc., 2003, 153-208.
doi: 10.1090/pspum/071/2024634. |
[25] |
S. Vũ Ngọc, On semi-global invariants for focus-focus singularities, Topology, 42 (2003), 365-380.
doi: 10.1016/S0040-9383(01)00026-X. |
[26] |
S. Vũ Ngọc, Moment polytopes for symplectic manifolds with monodromy, Adv. Math., 208 (2007), 909-934.
doi: 10.1016/j.aim.2006.04.004. |
[27] |
J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 58 (1936), 141-163.
doi: 10.2307/2371062. |
[28] |
N. T. Zung, Symplectic topology of integrable Hamiltonian systems I: Arnol'd-Liouville with singularities, Compositio Math., 101 (1996), 179-215. |
[29] |
N. T. Zung, A note on focus-focus singularities, Diff. Geom. Appl., 7 (1997), 123-130.
doi: 10.1016/S0926-2245(96)00042-3. |
[30] |
N. T. Zung, Another note on focus-focus singularities, Lett. Math. Phys., 60 (2002), 87-99.
doi: 10.1023/A:1015761729603. |
show all references
References:
[1] |
M. F. Atiyah, Convexity and commuting hamiltonians, Bull. London Math. Soc., 14 (1982), 1-15.
doi: 10.1112/blms/14.1.1. |
[2] |
O. Babelon and B. Doucot, Higher index focus-focus singularities in the Jaynes-Cummings-Gaudin model: symplectic invariants and monodromy,, preprint, ().
doi: 10.1016/j.geomphys.2014.07.011. |
[3] |
A. V. Bolsinov and A. A. Oshemkov, Singularities of integrable Hamiltonian systems, in Topological Methods in the Theory of Integrable Systems, Camb. Sci. Publ., Cambridge, 2006, 1-67. |
[4] |
M. Chaperon, Quelques outils de la théorie des actions différentiables, in Third Schnepfenried Geometry Conference, Vol. 1 (Schnepfenried, 1982), Astérisque, 107-108, Soc. Math. France, Paris, 1983, 259-275. |
[5] |
T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment, (French) [Periodic Hamiltonians and convex images of the momentum mapping], Bull. Soc. Math. France, 116 (1988), 315-339. |
[6] |
J. J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math., 33 (1980), 687-706.
doi: 10.1002/cpa.3160330602. |
[7] |
J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math., 69 (1982), 259-269.
doi: 10.1007/BF01399506. |
[8] |
L. H. Eliasson, Hamiltonian Systems with Poisson Commuting Integrals, Ph.D thesis, University of Stockholm, 1984. |
[9] |
L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case, Comment. Math. Helv., 65 (1990), 4-35.
doi: 10.1007/BF02566590. |
[10] |
A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics, Translated from the Russian by M. V. Tsaplina., Mathematics and its Applications (Soviet Series) 31, Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-009-3069-8. |
[11] |
V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math., 67 (1982), 491-513.
doi: 10.1007/BF01398933. |
[12] |
Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds, Mem. Amer. Math. Soc., 672 (1999).
doi: 10.1090/memo/0672. |
[13] |
Y. Karshon, L. Kessler and M. Pinsonnault, A compact symplectic four-manifold admits only finitely many inequivalent toric actions, J. Symplectic Geom., 5 (2007), 139-166.
doi: 10.4310/JSG.2007.v5.n2.a1. |
[14] |
Y. Karshon and S. Tolman, Centered complexity one Hamiltonian torus actions, Trans. Amer. Math. Soc., 353 (2001), 4831-4861 (electronic).
doi: 10.1090/S0002-9947-01-02799-4. |
[15] |
Y. Karshon and S. Tolman, Complete invariants for Hamiltonian torus actions with two dimensional quotients, J. Symplectic Geom., 2 (2003), 25-82.
doi: 10.4310/JSG.2004.v2.n1.a2. |
[16] |
Y. Karshon and S. Tolman, Classification of Hamiltonian torus actions with two dimensional quotients,, , ().
doi: 10.2140/gt.2014.18.669. |
[17] |
F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton University Press, 1984.
doi: 10.1007/BF01145470. |
[18] |
N. C. Leung and M. Symington, Almost toric symplectic four-manifolds, J. Symplectic Geom., 8 (2010), 143-187.
doi: 10.4310/JSG.2010.v8.n2.a2. |
[19] |
E. Miranda and N. T. Zung, Equivariant normal form for non-degenerate singular orbits of integrable Hamiltonian systems, Ann. Sci. Éc. Norm. Sup., 37 (2004), 819-839.
doi: 10.1016/j.ansens.2004.10.001. |
[20] |
Á. Pelayo and S. Vũ Ngọc, Semitoric integrable systems on symplectic 4-manifolds, Invent. Math., 177 (2009), 571-597.
doi: 10.1007/s00222-009-0190-x. |
[21] |
Á. Pelayo and S. Vũ Ngọc, Constructing integrable systems of semitoric type, Acta Math., 206 (2011), 93-125.
doi: 10.1007/s11511-011-0060-4. |
[22] |
Á. Pelayo and S. Vũ Ngọc, Symplectic theory of completely integrable Hamiltonian systems, Bull. Amer. Math. Soc. (N.S.), 48 (2011), 409-455.
doi: 10.1090/S0273-0979-2011-01338-6. |
[23] |
D. A. Sadovskií and B. I. Zĥilinskií, Monodromy, diabolic points and angular momentum coupling, Phys. Lett. A., 256 (1999), 235-244.
doi: 10.1016/S0375-9601(99)00229-7. |
[24] |
M. Symington, Four dimensions from two in symplectic topology, in Topology and Geometry of Manifolds (Athens, GA), Proc. Sympos. Pure Math., 71, Amer. Math. Soc., 2003, 153-208.
doi: 10.1090/pspum/071/2024634. |
[25] |
S. Vũ Ngọc, On semi-global invariants for focus-focus singularities, Topology, 42 (2003), 365-380.
doi: 10.1016/S0040-9383(01)00026-X. |
[26] |
S. Vũ Ngọc, Moment polytopes for symplectic manifolds with monodromy, Adv. Math., 208 (2007), 909-934.
doi: 10.1016/j.aim.2006.04.004. |
[27] |
J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 58 (1936), 141-163.
doi: 10.2307/2371062. |
[28] |
N. T. Zung, Symplectic topology of integrable Hamiltonian systems I: Arnol'd-Liouville with singularities, Compositio Math., 101 (1996), 179-215. |
[29] |
N. T. Zung, A note on focus-focus singularities, Diff. Geom. Appl., 7 (1997), 123-130.
doi: 10.1016/S0926-2245(96)00042-3. |
[30] |
N. T. Zung, Another note on focus-focus singularities, Lett. Math. Phys., 60 (2002), 87-99.
doi: 10.1023/A:1015761729603. |
[1] |
Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325 |
[2] |
Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431 |
[3] |
P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1 |
[4] |
George Papadopoulos, Holger R. Dullin. Semi-global symplectic invariants of the Euler top. Journal of Geometric Mechanics, 2013, 5 (2) : 215-232. doi: 10.3934/jgm.2013.5.215 |
[5] |
Sonja Hohloch. Characterization of toric systems via transport costs. Journal of Geometric Mechanics, 2020, 12 (3) : 447-454. doi: 10.3934/jgm.2020027 |
[6] |
Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61 |
[7] |
Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077 |
[8] |
Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097 |
[9] |
Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 |
[10] |
Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587 |
[11] |
Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67 |
[12] |
Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233 |
[13] |
Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227 |
[14] |
Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201 |
[15] |
Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855 |
[16] |
Marcel Guardia. Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2829-2859. doi: 10.3934/dcds.2013.33.2829 |
[17] |
C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7 |
[18] |
Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2019-2034. doi: 10.3934/dcdss.2019130 |
[19] |
Andrew James Bruce, Janusz Grabowski. Symplectic $ {\mathbb Z}_2^n $-manifolds. Journal of Geometric Mechanics, 2021, 13 (3) : 285-311. doi: 10.3934/jgm.2021020 |
[20] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]