June  2015, 35(6): 2523-2538. doi: 10.3934/dcds.2015.35.2523

Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint

1. 

Department of Mathematics, Kyoto University of Education, Fuji 1, Fukakusa Fushimi-ku, Kyoto 612-8522

2. 

Department of Education, School of Education, Bukkyo University, 96 Kitahananobo-cho, Murasakino, Kita-ku, Kyoto, 603-8301

Received  December 2013 Revised  April 2014 Published  December 2014

This paper is concerned with a heat convection problem. We discuss it in the framework of parabolic variational inequalities. The problem is a system of a heat equation with convection and a Navier-Stokes variational inequality with temperature-dependent velocity constraint. Our problem is a sort of parabolic quasi-variational inequalities in the sense that the constraint set for the velocity field depends on the unknown temperature. We shall give an existence result of the heat convection problem in a weak sense, and show that under some additional constraint for temperature there exists a strong solution of the problem.
Citation: Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523
References:
[1]

M. Aso, M. Frémond and N. Kenmochi, Parabolic systems with the unknown dependent constraints arising in phase transitions,, Internat. Ser. Numer. Math., 154 (2007), 45.  doi: 10.1007/978-3-7643-7719-9_5.  Google Scholar

[2]

H. Attuoch, Variational Convergence for Functions and Operators,, Pitman Advanced Publishing Program, (1984).   Google Scholar

[3]

A. Azevedo and L. Santos, A diffusion problem with gradient constraint depending on the temperature,, Adv. Math. Sci. Appl., 20 (2010), 153.   Google Scholar

[4]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert,, North-Holland, (1973).   Google Scholar

[5]

T. Fukao and N. Kenmochi, Variational inequality for the Navier-Stokes equations with time-dependent constraint,, GAKUTO Internat. Ser. Math. Sci. Appl., 34 (2011), 87.   Google Scholar

[6]

T. Fukao and N. Kenmochi, A thermohydraulics model with temperature dependent constraint on velocity fields,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 17.  doi: 10.3934/dcdss.2014.7.17.  Google Scholar

[7]

T. Fukao and N. Kenmochi, Parabolic variational inequalities with weakly time-dependent constraints,, Adv. Math. Sci. Appl., 23 (2013), 365.   Google Scholar

[8]

A. Kadoya, Y. Murase and N. Kenmochi, A class of nonlinear parabolic systems with environmental constraints,, Adv. Math. Sci. Appl., 20 (2010), 281.   Google Scholar

[9]

R. Kano, Y. Murase and N. Kenmochi, Nonlinear evolution equations generated by subdifferentials with nonlocal constraints,, Banach Center Publ., 86 (2009), 175.  doi: 10.4064/bc86-0-11.  Google Scholar

[10]

R. Kano, N. Kenmochi and Y. Murase, Parabolic quasi-variational inequalities with non-local constraints,, Adv. Math. Sci. Appl., 19 (2009), 565.   Google Scholar

[11]

N. Kenmochi, Some nonlinear parabolic variational inequalities,, Israel J. Math., 22 (1975), 304.  doi: 10.1007/BF02761596.  Google Scholar

[12]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Edu., 30 (1981), 1.   Google Scholar

[13]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities,, Handbook of Differential Equations: Stationary Partial Differential Equations, 4 (2007), 203.  doi: 10.1016/S1874-5733(07)80007-6.  Google Scholar

[14]

N. Kenmochi, Parabolic quasi-variational diffusion problems with gradient constraints,, Discrete Contin. Dyn. Syst. Ser. S., 6 (2013), 423.  doi: 10.3934/dcdss.2013.6.423.  Google Scholar

[15]

J. F. Rodrigues and L. Santos, A parabolic quasi-variational inequality arising in a superconductivity model,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 29 (2000), 153.   Google Scholar

[16]

K. Shirakawa, A. Ito, N. Yamazaki and N. Kenmochi, Asymptotic stability for evolution equations governed by subdifferentials,, GAKUTO Internat. Ser. Math. Sci. Appl., 11 (1998), 287.   Google Scholar

[17]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23 (1976), 491.   Google Scholar

show all references

References:
[1]

M. Aso, M. Frémond and N. Kenmochi, Parabolic systems with the unknown dependent constraints arising in phase transitions,, Internat. Ser. Numer. Math., 154 (2007), 45.  doi: 10.1007/978-3-7643-7719-9_5.  Google Scholar

[2]

H. Attuoch, Variational Convergence for Functions and Operators,, Pitman Advanced Publishing Program, (1984).   Google Scholar

[3]

A. Azevedo and L. Santos, A diffusion problem with gradient constraint depending on the temperature,, Adv. Math. Sci. Appl., 20 (2010), 153.   Google Scholar

[4]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert,, North-Holland, (1973).   Google Scholar

[5]

T. Fukao and N. Kenmochi, Variational inequality for the Navier-Stokes equations with time-dependent constraint,, GAKUTO Internat. Ser. Math. Sci. Appl., 34 (2011), 87.   Google Scholar

[6]

T. Fukao and N. Kenmochi, A thermohydraulics model with temperature dependent constraint on velocity fields,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 17.  doi: 10.3934/dcdss.2014.7.17.  Google Scholar

[7]

T. Fukao and N. Kenmochi, Parabolic variational inequalities with weakly time-dependent constraints,, Adv. Math. Sci. Appl., 23 (2013), 365.   Google Scholar

[8]

A. Kadoya, Y. Murase and N. Kenmochi, A class of nonlinear parabolic systems with environmental constraints,, Adv. Math. Sci. Appl., 20 (2010), 281.   Google Scholar

[9]

R. Kano, Y. Murase and N. Kenmochi, Nonlinear evolution equations generated by subdifferentials with nonlocal constraints,, Banach Center Publ., 86 (2009), 175.  doi: 10.4064/bc86-0-11.  Google Scholar

[10]

R. Kano, N. Kenmochi and Y. Murase, Parabolic quasi-variational inequalities with non-local constraints,, Adv. Math. Sci. Appl., 19 (2009), 565.   Google Scholar

[11]

N. Kenmochi, Some nonlinear parabolic variational inequalities,, Israel J. Math., 22 (1975), 304.  doi: 10.1007/BF02761596.  Google Scholar

[12]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Edu., 30 (1981), 1.   Google Scholar

[13]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities,, Handbook of Differential Equations: Stationary Partial Differential Equations, 4 (2007), 203.  doi: 10.1016/S1874-5733(07)80007-6.  Google Scholar

[14]

N. Kenmochi, Parabolic quasi-variational diffusion problems with gradient constraints,, Discrete Contin. Dyn. Syst. Ser. S., 6 (2013), 423.  doi: 10.3934/dcdss.2013.6.423.  Google Scholar

[15]

J. F. Rodrigues and L. Santos, A parabolic quasi-variational inequality arising in a superconductivity model,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 29 (2000), 153.   Google Scholar

[16]

K. Shirakawa, A. Ito, N. Yamazaki and N. Kenmochi, Asymptotic stability for evolution equations governed by subdifferentials,, GAKUTO Internat. Ser. Math. Sci. Appl., 11 (1998), 287.   Google Scholar

[17]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23 (1976), 491.   Google Scholar

[1]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[6]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[10]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[19]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[20]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]