• Previous Article
    Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint
  • DCDS Home
  • This Issue
  • Next Article
    Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects
June  2015, 35(6): 2539-2564. doi: 10.3934/dcds.2015.35.2539

Robust exponential attractors for the modified phase-field crystal equation

1. 

Dipartimento di Matematica, Politecnico di Milano, 20133 Milano

2. 

School of Mathematical Sciences, Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Han Dan Road 220, 200433 Shanghai

Received  December 2013 Revised  April 2014 Published  December 2014

We consider the modified phase-field crystal (MPFC) equation that has recently been proposed by P. Stefanovic et al. This is a variant of the phase-field crystal (PFC) equation, introduced by K.-R. Elder et al., which is characterized by the presence of an inertial term $\beta\phi_{tt}$. Here $\phi$ is the phase function standing for the number density of atoms and $\beta\geq 0$ is a relaxation time. The associated dynamical system for the MPFC equation with respect to the parameter $\beta$ is analyzed. More precisely, we establish the existence of a family of exponential attractors $\mathcal{M}_\beta$ that are Hölder continuous with respect to $\beta$.
Citation: Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539
References:
[1]

R. Backofen, A. Rätz and A. Voigt, Nucleation and growth by a phase field crystal (PFC) model,, Phil. Mag. Lett., 87 (2007), 813. doi: 10.1080/09500830701481737. Google Scholar

[2]

A. Baskaran, Z. Hu, J. S. Lowengrub, C. Wang, S. Wise and P. Zhou, Energy stable and efficient finite-difference nonlinear-multigrid schemes for the modified phase-field crystal equation,, J. Comput. Phys., 250 (2013), 270. doi: 10.1016/j.jcp.2013.04.024. Google Scholar

[3]

A. Baskaran, J. S. Lowengrub, C. Wang and S. M. Wise, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation,, SIAM J. Numer. Anal., 51 (2013), 2851. doi: 10.1137/120880677. Google Scholar

[4]

M. Cheng and J. A. Warren, An efficient algorithm for solving the phase field crystal model,, J. Comput. Phys., 227 (2008), 6241. doi: 10.1016/j.jcp.2008.03.012. Google Scholar

[5]

M. Cheng, J. Kundin, D. Li and H. Emmerich, Thermodynamic consistency and fast dynamics in phase-field crystal modeling,, Phil. Mag. Lett., 92 (2012), 517. doi: 10.1080/09500839.2012.691215. Google Scholar

[6]

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth,, Phys. Rev. Lett., 88 (2002). doi: 10.1103/PhysRevLett.88.245701. Google Scholar

[7]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase-field crystal,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.051605. Google Scholar

[8]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbbR^3$,, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713. doi: 10.1016/S0764-4442(00)00259-7. Google Scholar

[9]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703. doi: 10.1017/S030821050000408X. Google Scholar

[10]

H. Emmerich, L. Gránásy and H. Löwen, Selected issues of phase-field crystal simulations,, Eur. Phys. J. Plus, 126 (2011). doi: 10.1140/epjp/i2011-11102-1. Google Scholar

[11]

H. Emmerich, H. Löwen, R. Wittkowskib, T. Gruhn, G. I. Tóth, G. Tegze and L. Gránásy, Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview,, Adv. Phys., 61 (2012), 665. doi: 10.1080/00018732.2012.737555. Google Scholar

[12]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation,, Discrete Contin. Dyn. Syst., 10 (2004), 211. doi: 10.3934/dcds.2004.10.211. Google Scholar

[13]

P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems,, Phys. Rev. E, 71 (2005). doi: 10.1103/PhysRevE.71.046125. Google Scholar

[14]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.051110. Google Scholar

[15]

P. Galenko and K. Elder, Marginal stability analysis of the phase field crystal model in one spatial dimension,, Phys. Rev. B, 83 (2011). doi: 10.1103/PhysRevB.83.064113. Google Scholar

[16]

P. Galenko, H. Gomez, N. V. Kropotin and K. R. Elder, Unconditionally stable method and numerical solution of the hyperbolic (modified) phase-field crystal equation,, Phys. Rev. E, 88 (2013). Google Scholar

[17]

H. Gomez and X. Nogueira, An unconditionally energy-stable method for the phase field crystal equation,, Comput. Methods Appl. Mech. Engrg., 249/252 (2012), 52. doi: 10.1016/j.cma.2012.03.002. Google Scholar

[18]

M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation,, Math. Models Methods Appl. Sci., 24 (2014), 2743. doi: 10.1142/S0218202514500365. Google Scholar

[19]

Z. Hu, S. M. Wise, C. Wang and J. S. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation,, J. Comput. Phys., 228 (2009), 5323. doi: 10.1016/j.jcp.2009.04.020. Google Scholar

[20]

A. Miranville, V. Pata and S. Zelik, Exponential attractors for singularly perturbed damped wave equations: a simple construction,, Asymptot. Anal., 53 (2007), 1. Google Scholar

[21]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of differential equations: evolutionary equations, IV (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[22]

H. Ohnogi and Y. Shiwa, Instability of spatially periodic patterns due to a zero mode in the phase-field crystal equation,, Phys. D, 237 (2008), 3046. doi: 10.1016/j.physd.2008.06.011. Google Scholar

[23]

N. Provatas, J. A. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld and K. R. Elder, Using the phase-field crystal method in the multi-scale modeling of microstructure evolution,, Journal of the Minerals, 59 (2007), 83. doi: 10.1007/s11837-007-0095-3. Google Scholar

[24]

P. Stefanovic, M. Haataja and N. Provatas, Phase-field crystals with elastic interactions,, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.225504. Google Scholar

[25]

P. Stefanovic, M. Haataja and N. Provatas, Phase-field crystal study of deformation and plasticity in nanocrystalline materials,, Phys. Rev. E, 80 (2009). doi: 10.1103/PhysRevE.80.046107. Google Scholar

[26]

C. Wang and S. M. Wise, Global smooth solutions of the three dimensional modified phase field crystal equation,, Methods Appl. Anal., 17 (2010), 191. doi: 10.4310/MAA.2010.v17.n2.a4. Google Scholar

[27]

C. Wang and S. M. Wise, An energy stable and convergent finite difference scheme for the modified phase-field crystal equation,, SIAM J. Numer. Anal., 49 (2011), 945. doi: 10.1137/090752675. Google Scholar

[28]

S. M. Wise, C. Wang and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase-field crystal equation,, SIAM J. Numer. Anal., 47 (2009), 2269. doi: 10.1137/080738143. Google Scholar

show all references

References:
[1]

R. Backofen, A. Rätz and A. Voigt, Nucleation and growth by a phase field crystal (PFC) model,, Phil. Mag. Lett., 87 (2007), 813. doi: 10.1080/09500830701481737. Google Scholar

[2]

A. Baskaran, Z. Hu, J. S. Lowengrub, C. Wang, S. Wise and P. Zhou, Energy stable and efficient finite-difference nonlinear-multigrid schemes for the modified phase-field crystal equation,, J. Comput. Phys., 250 (2013), 270. doi: 10.1016/j.jcp.2013.04.024. Google Scholar

[3]

A. Baskaran, J. S. Lowengrub, C. Wang and S. M. Wise, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation,, SIAM J. Numer. Anal., 51 (2013), 2851. doi: 10.1137/120880677. Google Scholar

[4]

M. Cheng and J. A. Warren, An efficient algorithm for solving the phase field crystal model,, J. Comput. Phys., 227 (2008), 6241. doi: 10.1016/j.jcp.2008.03.012. Google Scholar

[5]

M. Cheng, J. Kundin, D. Li and H. Emmerich, Thermodynamic consistency and fast dynamics in phase-field crystal modeling,, Phil. Mag. Lett., 92 (2012), 517. doi: 10.1080/09500839.2012.691215. Google Scholar

[6]

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth,, Phys. Rev. Lett., 88 (2002). doi: 10.1103/PhysRevLett.88.245701. Google Scholar

[7]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase-field crystal,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.051605. Google Scholar

[8]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbbR^3$,, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713. doi: 10.1016/S0764-4442(00)00259-7. Google Scholar

[9]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703. doi: 10.1017/S030821050000408X. Google Scholar

[10]

H. Emmerich, L. Gránásy and H. Löwen, Selected issues of phase-field crystal simulations,, Eur. Phys. J. Plus, 126 (2011). doi: 10.1140/epjp/i2011-11102-1. Google Scholar

[11]

H. Emmerich, H. Löwen, R. Wittkowskib, T. Gruhn, G. I. Tóth, G. Tegze and L. Gránásy, Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview,, Adv. Phys., 61 (2012), 665. doi: 10.1080/00018732.2012.737555. Google Scholar

[12]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation,, Discrete Contin. Dyn. Syst., 10 (2004), 211. doi: 10.3934/dcds.2004.10.211. Google Scholar

[13]

P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems,, Phys. Rev. E, 71 (2005). doi: 10.1103/PhysRevE.71.046125. Google Scholar

[14]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.051110. Google Scholar

[15]

P. Galenko and K. Elder, Marginal stability analysis of the phase field crystal model in one spatial dimension,, Phys. Rev. B, 83 (2011). doi: 10.1103/PhysRevB.83.064113. Google Scholar

[16]

P. Galenko, H. Gomez, N. V. Kropotin and K. R. Elder, Unconditionally stable method and numerical solution of the hyperbolic (modified) phase-field crystal equation,, Phys. Rev. E, 88 (2013). Google Scholar

[17]

H. Gomez and X. Nogueira, An unconditionally energy-stable method for the phase field crystal equation,, Comput. Methods Appl. Mech. Engrg., 249/252 (2012), 52. doi: 10.1016/j.cma.2012.03.002. Google Scholar

[18]

M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation,, Math. Models Methods Appl. Sci., 24 (2014), 2743. doi: 10.1142/S0218202514500365. Google Scholar

[19]

Z. Hu, S. M. Wise, C. Wang and J. S. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation,, J. Comput. Phys., 228 (2009), 5323. doi: 10.1016/j.jcp.2009.04.020. Google Scholar

[20]

A. Miranville, V. Pata and S. Zelik, Exponential attractors for singularly perturbed damped wave equations: a simple construction,, Asymptot. Anal., 53 (2007), 1. Google Scholar

[21]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of differential equations: evolutionary equations, IV (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[22]

H. Ohnogi and Y. Shiwa, Instability of spatially periodic patterns due to a zero mode in the phase-field crystal equation,, Phys. D, 237 (2008), 3046. doi: 10.1016/j.physd.2008.06.011. Google Scholar

[23]

N. Provatas, J. A. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld and K. R. Elder, Using the phase-field crystal method in the multi-scale modeling of microstructure evolution,, Journal of the Minerals, 59 (2007), 83. doi: 10.1007/s11837-007-0095-3. Google Scholar

[24]

P. Stefanovic, M. Haataja and N. Provatas, Phase-field crystals with elastic interactions,, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.225504. Google Scholar

[25]

P. Stefanovic, M. Haataja and N. Provatas, Phase-field crystal study of deformation and plasticity in nanocrystalline materials,, Phys. Rev. E, 80 (2009). doi: 10.1103/PhysRevE.80.046107. Google Scholar

[26]

C. Wang and S. M. Wise, Global smooth solutions of the three dimensional modified phase field crystal equation,, Methods Appl. Anal., 17 (2010), 191. doi: 10.4310/MAA.2010.v17.n2.a4. Google Scholar

[27]

C. Wang and S. M. Wise, An energy stable and convergent finite difference scheme for the modified phase-field crystal equation,, SIAM J. Numer. Anal., 49 (2011), 945. doi: 10.1137/090752675. Google Scholar

[28]

S. M. Wise, C. Wang and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase-field crystal equation,, SIAM J. Numer. Anal., 47 (2009), 2269. doi: 10.1137/080738143. Google Scholar

[1]

S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019

[2]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[3]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[4]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure & Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

[5]

Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295

[6]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[7]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[8]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[9]

Eugen Mihailescu. Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 961-975. doi: 10.3934/dcds.2012.32.961

[10]

Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011

[11]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

[12]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[13]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[14]

P.K. Galenko, E.V. Abramova, D.M. Herlach. Phase-field study of solute trapping effect in rapid solidification. Conference Publications, 2011, 2011 (Special) : 457-466. doi: 10.3934/proc.2011.2011.457

[15]

Peng Yu, Qiang Du. A variational construction of anisotropic mobility in phase-field simulation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 391-406. doi: 10.3934/dcdsb.2006.6.391

[16]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[17]

Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63

[18]

Ahmed Bonfoh, Cyril D. Enyi. Large time behavior of a conserved phase-field system. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1077-1105. doi: 10.3934/cpaa.2016.15.1077

[19]

M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827

[20]

Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]