-
Previous Article
On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions
- DCDS Home
- This Issue
-
Next Article
Robust exponential attractors for the modified phase-field crystal equation
Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects
1. | Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstr. 39, 10117 Berlin, Germany, Germany |
References:
[1] |
L. Bartkowiak and I. Pawlow, The Cahn-Hilliard-Gurtin system coupled with elasticity, Control Cybernet., 34 (2005), 1005-1043. |
[2] |
J. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math., Ser. B, 32 (2011), 823-846.
doi: 10.1007/s11401-011-0682-z. |
[3] |
T. Böhme, W. Dreyer, F. Duderstadt and W. Müller, A Higher Gradient Theory of Mixtures for Multi-component Materials with Numerical Examples for Binary Alloys, WIAS-Preprint No. 1286, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 2007. |
[4] |
T. Böhme, W. Dreyer and W. Müller, Determination of stiffness and higher gradient coefficients by means of the embedded atom method: An approach for binary alloys, Contin. Mech. Thermodyn., 18 (2007), 411-441.
doi: 10.1007/s00161-006-0037-2. |
[5] |
E. Bonetti, P. Colli, W. Dreyer, G. Gilardi, G. Schimperna and J. Sprekels, On a model for phase separation in binary alloys driven by mechanical effects, Phys. D, 165 (2002), 48-65.
doi: 10.1016/S0167-2789(02)00373-1. |
[6] |
E. Bonetti and G. Schimperna, Local existence for Frémond's model of damage in elastic materials, Contin. Mech. Thermodyn., 16 (2004), 319-335.
doi: 10.1007/s00161-003-0152-2. |
[7] |
E. Bonetti, G. Schimperna and A. Segatti, On a doubly nonlinear model for the evolution of damaging in viscoelastic materials, J. Differential Equations, 218 (2005), 91-116.
doi: 10.1016/j.jde.2005.04.015. |
[8] |
M. Carrive, A. Miranville and A. Piétrus, The Cahn-Hilliard equation for deformable elastic media, Adv. Math. Sci. Appl., 10 (2000), 539-569. |
[9] |
M. Frémond, Non-smooth Thermomechanics, Berlin: Springer, 2002.
doi: 10.1007/978-3-662-04800-9. |
[10] |
M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power, Int. J. Solids Structures, 33 (1996), 1083-1103.
doi: 10.1016/0020-7683(95)00074-7. |
[11] |
H. Garcke, On Mathematical Models for Phase Separation in Elastically Stressed Solids, Habilitation thesis, University Bonn, 2000. |
[12] |
C. Heinemann and C. Kraus, Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage, Adv. Math. Sci. Appl., 21 (2011), 321-359. |
[13] |
C. Heinemann and C. Kraus, A degenerating Cahn-Hilliard system coupled with complete damage processes, WIAS preprint no. 1759. |
[14] |
C. Heinemann and C. Kraus, Existence of weak solutions for a hyperbolic-parabolic phase field system with mixed boundary conditions on non-smooth domains, WIAS preprint no. 1890. |
[15] |
C. Heinemann and C. Kraus, Existence results for diffuse interface models describing phase separation and damage, European J. Appl. Math., 24 (2013), 179-211.
doi: 10.1017/S095679251200037X. |
[16] |
D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model, Math. Models Methods Appl. Sci., 23 (2013), 565-616.
doi: 10.1142/S021820251250056X. |
[17] |
A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity, Math. Models Methods Appl. Sci., 16 (2006), 177-209.
doi: 10.1142/S021820250600111X. |
[18] |
A. Mielke and M. Thomas, Damage of nonlinearly elastic materials at small strain - Existence and regularity results, ZAMM Z. Angew. Math. Mech, 90 (2010), 88-112.
doi: 10.1002/zamm.200900243. |
[19] |
I. Pawlow and W. M. Zajączkowski, Measure-valued solutions of a heterogeneous Cahn-Hilliard system in elastic solids, Colloquium Mathematicum, 112 (2008), 313-334.
doi: 10.4064/cm112-2-7. |
[20] |
E. Rocca and R. Rossi, A degenerating PDE system for phase transitions and damage, Math. Models Methods Appl. Sci., 24 (2014), 1265-1341. arXiv:1205.3578v1.
doi: 10.1142/S021820251450002X. |
[21] |
G. Schimperna and I. Pawłow, A Cahn-Hilliard equation with singular diffusion, J. Differential Equations, 254 (2013), 779-803.
doi: 10.1016/j.jde.2012.09.018. |
[22] |
G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63.
doi: 10.1137/110835608. |
[23] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1986), 65-96.
doi: 10.1007/BF01762360. |
show all references
References:
[1] |
L. Bartkowiak and I. Pawlow, The Cahn-Hilliard-Gurtin system coupled with elasticity, Control Cybernet., 34 (2005), 1005-1043. |
[2] |
J. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math., Ser. B, 32 (2011), 823-846.
doi: 10.1007/s11401-011-0682-z. |
[3] |
T. Böhme, W. Dreyer, F. Duderstadt and W. Müller, A Higher Gradient Theory of Mixtures for Multi-component Materials with Numerical Examples for Binary Alloys, WIAS-Preprint No. 1286, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 2007. |
[4] |
T. Böhme, W. Dreyer and W. Müller, Determination of stiffness and higher gradient coefficients by means of the embedded atom method: An approach for binary alloys, Contin. Mech. Thermodyn., 18 (2007), 411-441.
doi: 10.1007/s00161-006-0037-2. |
[5] |
E. Bonetti, P. Colli, W. Dreyer, G. Gilardi, G. Schimperna and J. Sprekels, On a model for phase separation in binary alloys driven by mechanical effects, Phys. D, 165 (2002), 48-65.
doi: 10.1016/S0167-2789(02)00373-1. |
[6] |
E. Bonetti and G. Schimperna, Local existence for Frémond's model of damage in elastic materials, Contin. Mech. Thermodyn., 16 (2004), 319-335.
doi: 10.1007/s00161-003-0152-2. |
[7] |
E. Bonetti, G. Schimperna and A. Segatti, On a doubly nonlinear model for the evolution of damaging in viscoelastic materials, J. Differential Equations, 218 (2005), 91-116.
doi: 10.1016/j.jde.2005.04.015. |
[8] |
M. Carrive, A. Miranville and A. Piétrus, The Cahn-Hilliard equation for deformable elastic media, Adv. Math. Sci. Appl., 10 (2000), 539-569. |
[9] |
M. Frémond, Non-smooth Thermomechanics, Berlin: Springer, 2002.
doi: 10.1007/978-3-662-04800-9. |
[10] |
M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power, Int. J. Solids Structures, 33 (1996), 1083-1103.
doi: 10.1016/0020-7683(95)00074-7. |
[11] |
H. Garcke, On Mathematical Models for Phase Separation in Elastically Stressed Solids, Habilitation thesis, University Bonn, 2000. |
[12] |
C. Heinemann and C. Kraus, Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage, Adv. Math. Sci. Appl., 21 (2011), 321-359. |
[13] |
C. Heinemann and C. Kraus, A degenerating Cahn-Hilliard system coupled with complete damage processes, WIAS preprint no. 1759. |
[14] |
C. Heinemann and C. Kraus, Existence of weak solutions for a hyperbolic-parabolic phase field system with mixed boundary conditions on non-smooth domains, WIAS preprint no. 1890. |
[15] |
C. Heinemann and C. Kraus, Existence results for diffuse interface models describing phase separation and damage, European J. Appl. Math., 24 (2013), 179-211.
doi: 10.1017/S095679251200037X. |
[16] |
D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model, Math. Models Methods Appl. Sci., 23 (2013), 565-616.
doi: 10.1142/S021820251250056X. |
[17] |
A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity, Math. Models Methods Appl. Sci., 16 (2006), 177-209.
doi: 10.1142/S021820250600111X. |
[18] |
A. Mielke and M. Thomas, Damage of nonlinearly elastic materials at small strain - Existence and regularity results, ZAMM Z. Angew. Math. Mech, 90 (2010), 88-112.
doi: 10.1002/zamm.200900243. |
[19] |
I. Pawlow and W. M. Zajączkowski, Measure-valued solutions of a heterogeneous Cahn-Hilliard system in elastic solids, Colloquium Mathematicum, 112 (2008), 313-334.
doi: 10.4064/cm112-2-7. |
[20] |
E. Rocca and R. Rossi, A degenerating PDE system for phase transitions and damage, Math. Models Methods Appl. Sci., 24 (2014), 1265-1341. arXiv:1205.3578v1.
doi: 10.1142/S021820251450002X. |
[21] |
G. Schimperna and I. Pawłow, A Cahn-Hilliard equation with singular diffusion, J. Differential Equations, 254 (2013), 779-803.
doi: 10.1016/j.jde.2012.09.018. |
[22] |
G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63.
doi: 10.1137/110835608. |
[23] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1986), 65-96.
doi: 10.1007/BF01762360. |
[1] |
Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic and Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031 |
[2] |
Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027 |
[3] |
Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049 |
[4] |
Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125 |
[5] |
Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630 |
[6] |
Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741 |
[7] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73 |
[8] |
Irena Pawłow, Wojciech M. Zajączkowski. Regular weak solutions to 3-D Cahn-Hilliard system in elastic solids. Conference Publications, 2007, 2007 (Special) : 824-833. doi: 10.3934/proc.2007.2007.824 |
[9] |
Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227 |
[10] |
Alain Miranville, Giulio Schimperna. On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 675-697. doi: 10.3934/dcdsb.2010.14.675 |
[11] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[12] |
Alberto Farina. Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2505-2511. doi: 10.3934/dcds.2014.34.2505 |
[13] |
Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033 |
[14] |
Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423 |
[15] |
Ming-Po Chen, Li-hong Huang. Existence of solutions in the future for a class of nonlinear differential systems. Conference Publications, 1998, 1998 (Special) : 138-147. doi: 10.3934/proc.1998.1998.138 |
[16] |
Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic and Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883 |
[17] |
Francesca R. Guarguaglini. Global solutions for a chemotaxis hyperbolic-parabolic system on networks with nonhomogeneous boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1057-1087. doi: 10.3934/cpaa.2020049 |
[18] |
Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 167-191. doi: 10.3934/dcdss.2013.6.167 |
[19] |
Yanni Zeng. LP decay for general hyperbolic-parabolic systems of balance laws. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 363-396. doi: 10.3934/dcds.2018018 |
[20] |
Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]