• Previous Article
    On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions
  • DCDS Home
  • This Issue
  • Next Article
    Robust exponential attractors for the modified phase-field crystal equation
June  2015, 35(6): 2565-2590. doi: 10.3934/dcds.2015.35.2565

Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects

1. 

Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstr. 39, 10117 Berlin, Germany, Germany

Received  December 2013 Revised  February 2014 Published  December 2014

In this paper, we consider a coupled PDE system describing phase separation and damage phenomena in elastically stressed alloys in the presence of inertial effects. The material is considered on a bounded Lipschitz domain with mixed boundary conditions for the displacement variable. The main aim of this work is to establish existence of weak solutions for the introduced hyperbolic-parabolic system. To this end, we first adopt the notion of weak solutions introduced in [12]. Then we prove existence of weak solutions by means of regularization, time-discretization and different variational techniques.
Citation: Christian Heinemann, Christiane Kraus. Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2565-2590. doi: 10.3934/dcds.2015.35.2565
References:
[1]

L. Bartkowiak and I. Pawlow, The Cahn-Hilliard-Gurtin system coupled with elasticity,, Control Cybernet., 34 (2005), 1005.   Google Scholar

[2]

J. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary,, Chin. Ann. Math., 32 (2011), 823.  doi: 10.1007/s11401-011-0682-z.  Google Scholar

[3]

T. Böhme, W. Dreyer, F. Duderstadt and W. Müller, A Higher Gradient Theory of Mixtures for Multi-component Materials with Numerical Examples for Binary Alloys,, WIAS-Preprint No. 1286, (1286).   Google Scholar

[4]

T. Böhme, W. Dreyer and W. Müller, Determination of stiffness and higher gradient coefficients by means of the embedded atom method: An approach for binary alloys,, Contin. Mech. Thermodyn., 18 (2007), 411.  doi: 10.1007/s00161-006-0037-2.  Google Scholar

[5]

E. Bonetti, P. Colli, W. Dreyer, G. Gilardi, G. Schimperna and J. Sprekels, On a model for phase separation in binary alloys driven by mechanical effects,, Phys. D, 165 (2002), 48.  doi: 10.1016/S0167-2789(02)00373-1.  Google Scholar

[6]

E. Bonetti and G. Schimperna, Local existence for Frémond's model of damage in elastic materials,, Contin. Mech. Thermodyn., 16 (2004), 319.  doi: 10.1007/s00161-003-0152-2.  Google Scholar

[7]

E. Bonetti, G. Schimperna and A. Segatti, On a doubly nonlinear model for the evolution of damaging in viscoelastic materials,, J. Differential Equations, 218 (2005), 91.  doi: 10.1016/j.jde.2005.04.015.  Google Scholar

[8]

M. Carrive, A. Miranville and A. Piétrus, The Cahn-Hilliard equation for deformable elastic media,, Adv. Math. Sci. Appl., 10 (2000), 539.   Google Scholar

[9]

M. Frémond, Non-smooth Thermomechanics,, Berlin: Springer, (2002).  doi: 10.1007/978-3-662-04800-9.  Google Scholar

[10]

M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power,, Int. J. Solids Structures, 33 (1996), 1083.  doi: 10.1016/0020-7683(95)00074-7.  Google Scholar

[11]

H. Garcke, On Mathematical Models for Phase Separation in Elastically Stressed Solids,, Habilitation thesis, (2000).   Google Scholar

[12]

C. Heinemann and C. Kraus, Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage,, Adv. Math. Sci. Appl., 21 (2011), 321.   Google Scholar

[13]

C. Heinemann and C. Kraus, A degenerating Cahn-Hilliard system coupled with complete damage processes,, WIAS preprint no. 1759., (1759).   Google Scholar

[14]

C. Heinemann and C. Kraus, Existence of weak solutions for a hyperbolic-parabolic phase field system with mixed boundary conditions on non-smooth domains,, WIAS preprint no. 1890., (1890).   Google Scholar

[15]

C. Heinemann and C. Kraus, Existence results for diffuse interface models describing phase separation and damage,, European J. Appl. Math., 24 (2013), 179.  doi: 10.1017/S095679251200037X.  Google Scholar

[16]

D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model,, Math. Models Methods Appl. Sci., 23 (2013), 565.  doi: 10.1142/S021820251250056X.  Google Scholar

[17]

A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity,, Math. Models Methods Appl. Sci., 16 (2006), 177.  doi: 10.1142/S021820250600111X.  Google Scholar

[18]

A. Mielke and M. Thomas, Damage of nonlinearly elastic materials at small strain - Existence and regularity results,, ZAMM Z. Angew. Math. Mech, 90 (2010), 88.  doi: 10.1002/zamm.200900243.  Google Scholar

[19]

I. Pawlow and W. M. Zajączkowski, Measure-valued solutions of a heterogeneous Cahn-Hilliard system in elastic solids,, Colloquium Mathematicum, 112 (2008), 313.  doi: 10.4064/cm112-2-7.  Google Scholar

[20]

E. Rocca and R. Rossi, A degenerating PDE system for phase transitions and damage,, Math. Models Methods Appl. Sci., 24 (2014), 1265.  doi: 10.1142/S021820251450002X.  Google Scholar

[21]

G. Schimperna and I. Pawłow, A Cahn-Hilliard equation with singular diffusion,, J. Differential Equations, 254 (2013), 779.  doi: 10.1016/j.jde.2012.09.018.  Google Scholar

[22]

G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion,, SIAM J. Math. Anal., 45 (2013), 31.  doi: 10.1137/110835608.  Google Scholar

[23]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1986), 65.  doi: 10.1007/BF01762360.  Google Scholar

show all references

References:
[1]

L. Bartkowiak and I. Pawlow, The Cahn-Hilliard-Gurtin system coupled with elasticity,, Control Cybernet., 34 (2005), 1005.   Google Scholar

[2]

J. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary,, Chin. Ann. Math., 32 (2011), 823.  doi: 10.1007/s11401-011-0682-z.  Google Scholar

[3]

T. Böhme, W. Dreyer, F. Duderstadt and W. Müller, A Higher Gradient Theory of Mixtures for Multi-component Materials with Numerical Examples for Binary Alloys,, WIAS-Preprint No. 1286, (1286).   Google Scholar

[4]

T. Böhme, W. Dreyer and W. Müller, Determination of stiffness and higher gradient coefficients by means of the embedded atom method: An approach for binary alloys,, Contin. Mech. Thermodyn., 18 (2007), 411.  doi: 10.1007/s00161-006-0037-2.  Google Scholar

[5]

E. Bonetti, P. Colli, W. Dreyer, G. Gilardi, G. Schimperna and J. Sprekels, On a model for phase separation in binary alloys driven by mechanical effects,, Phys. D, 165 (2002), 48.  doi: 10.1016/S0167-2789(02)00373-1.  Google Scholar

[6]

E. Bonetti and G. Schimperna, Local existence for Frémond's model of damage in elastic materials,, Contin. Mech. Thermodyn., 16 (2004), 319.  doi: 10.1007/s00161-003-0152-2.  Google Scholar

[7]

E. Bonetti, G. Schimperna and A. Segatti, On a doubly nonlinear model for the evolution of damaging in viscoelastic materials,, J. Differential Equations, 218 (2005), 91.  doi: 10.1016/j.jde.2005.04.015.  Google Scholar

[8]

M. Carrive, A. Miranville and A. Piétrus, The Cahn-Hilliard equation for deformable elastic media,, Adv. Math. Sci. Appl., 10 (2000), 539.   Google Scholar

[9]

M. Frémond, Non-smooth Thermomechanics,, Berlin: Springer, (2002).  doi: 10.1007/978-3-662-04800-9.  Google Scholar

[10]

M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power,, Int. J. Solids Structures, 33 (1996), 1083.  doi: 10.1016/0020-7683(95)00074-7.  Google Scholar

[11]

H. Garcke, On Mathematical Models for Phase Separation in Elastically Stressed Solids,, Habilitation thesis, (2000).   Google Scholar

[12]

C. Heinemann and C. Kraus, Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage,, Adv. Math. Sci. Appl., 21 (2011), 321.   Google Scholar

[13]

C. Heinemann and C. Kraus, A degenerating Cahn-Hilliard system coupled with complete damage processes,, WIAS preprint no. 1759., (1759).   Google Scholar

[14]

C. Heinemann and C. Kraus, Existence of weak solutions for a hyperbolic-parabolic phase field system with mixed boundary conditions on non-smooth domains,, WIAS preprint no. 1890., (1890).   Google Scholar

[15]

C. Heinemann and C. Kraus, Existence results for diffuse interface models describing phase separation and damage,, European J. Appl. Math., 24 (2013), 179.  doi: 10.1017/S095679251200037X.  Google Scholar

[16]

D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model,, Math. Models Methods Appl. Sci., 23 (2013), 565.  doi: 10.1142/S021820251250056X.  Google Scholar

[17]

A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity,, Math. Models Methods Appl. Sci., 16 (2006), 177.  doi: 10.1142/S021820250600111X.  Google Scholar

[18]

A. Mielke and M. Thomas, Damage of nonlinearly elastic materials at small strain - Existence and regularity results,, ZAMM Z. Angew. Math. Mech, 90 (2010), 88.  doi: 10.1002/zamm.200900243.  Google Scholar

[19]

I. Pawlow and W. M. Zajączkowski, Measure-valued solutions of a heterogeneous Cahn-Hilliard system in elastic solids,, Colloquium Mathematicum, 112 (2008), 313.  doi: 10.4064/cm112-2-7.  Google Scholar

[20]

E. Rocca and R. Rossi, A degenerating PDE system for phase transitions and damage,, Math. Models Methods Appl. Sci., 24 (2014), 1265.  doi: 10.1142/S021820251450002X.  Google Scholar

[21]

G. Schimperna and I. Pawłow, A Cahn-Hilliard equation with singular diffusion,, J. Differential Equations, 254 (2013), 779.  doi: 10.1016/j.jde.2012.09.018.  Google Scholar

[22]

G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion,, SIAM J. Math. Anal., 45 (2013), 31.  doi: 10.1137/110835608.  Google Scholar

[23]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1986), 65.  doi: 10.1007/BF01762360.  Google Scholar

[1]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[2]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[3]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[4]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[5]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[6]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[9]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277

[10]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[11]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[12]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[13]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[14]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[15]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[18]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[19]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[20]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]