Citation: |
[1] |
J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63 (1976/77), 337-403. doi: 10.1007/BF00279992. |
[2] |
M. Barchiesi and A. DeSimone, Frank energy for nematic elastomers: A nonlinear model, Preprint CVGMT Pisa, 2013. Accepted in ESAIM Control Optim. Calc. Var. |
[3] |
W. Bielski and B. Gambin, Relationship between existence of energy minimizers of incompressible and nearly incompressible magnetostrictive materials, Rep. Math. Phys., 66 (2010), 147-157.doi: 10.1016/S0034-4877(10)00023-6. |
[4] |
A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape-memory single crystals, Z. Angew. Math. Phys., 64 (2013), 343-359.doi: 10.1007/s00033-012-0223-y. |
[5] |
A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis, Math. Models Meth. Appl. Sci., 21 (2011), 1043-1069.doi: 10.1142/S0218202511005246. |
[6] |
W. F. Brown, Jr., Magnetoelastic Interactions, Springer, Berlin, 1966.doi: 10.1007/978-3-642-87396-6. |
[7] |
S. Chikazumi, Physics of Magnetism, J. Wiley, New York, 1964. |
[8] |
P. G. Ciarlet, Mathematical Elasticity, Vol. I: Three-dimensional Elasticity, North-Holland, Amsterdam, 1988. |
[9] |
P. G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Ration. Mech. Anal., 97 (1987), 171-188.doi: 10.1007/BF00250807. |
[10] |
B. Dacorogna, Direct Methods in the Calculus of Variations, Second edition. Springer, New York, 2008. |
[11] |
A. DeSimone, Energy minimizers for large ferromagnetic bodies, Arch. Ration. Mech. Anal., 125 (1993), 99-143.doi: 10.1007/BF00376811. |
[12] |
A. DeSimone and G. Dolzmann, Existence of minimizers for a variational problem in two-dimensional nonlinear magnetoelasticity, Arch. Ration. Mech. Anal., 144 (1998), 107-120.doi: 10.1007/s002050050114. |
[13] |
A. DeSimone and R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320.doi: 10.1016/S0022-5096(01)00050-3. |
[14] |
G. Eisen, A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals, Manuscripta Math. 27 (1979), 73-79.doi: 10.1007/BF01297738. |
[15] |
G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math., 595 (2006), 55-91.doi: 10.1515/CRELLE.2006.044. |
[16] |
R. D. James and D. Kinderlehrer, Frustration in ferromagnetic materials, Contin. Mech. Thermodyn., 2 (1990), 215-239.doi: 10.1007/BF01129598. |
[17] |
R. D. James and D. Kinderlehrer, Theory of magnetostriction with application to $Tb_xDy_{1-x}Fe_2$, Phil. Mag. B, 68 (1993), 237-274.doi: 10.1080/01418639308226405. |
[18] |
J. Liakhova, A Theory of Magnetostrictive Thin Films with Applications, PhD Thesis, University of Minnesota, 1999. |
[19] |
J. Liakhova, M. Luskin and T. Zhang, Computational modeling of ferromagnetic shape memory thin films, Ferroelectrics, 342 (2005), 73-82.doi: 10.1080/00150190600946211. |
[20] |
M. Luskin and T. Zhang, Numerical analysis of a model for ferromagnetic shape memory thin films, Comput. Methods Appl. Mech. Engrg., 196 (2007), 37-40.doi: 10.1016/j.cma.2006.10.039. |
[21] |
A. Mielke, Evolution of rate-independent systems, in Handbook of Differential Equations, Evolutionary Equations (eds., C. Dafermos and E. Feireisl), Elsevier, 2 (2005), 461-559. |
[22] |
A. Mielke and F. Theil, Mathematical model for rate-independent phase transformations, In: Models of Cont. Mechanics in Analysis and Engineering (Alber, H.-D., Balean, R., Farwig, R. eds.) Shaker-Verlag, Aachen, 1999, pp. 117-129. |
[23] |
A. Mielke and F. Theil, On rate-independent hysteresis models, Nonlin. Diff. Eq. Appl., 11 (2004), 151-189.doi: 10.1007/s00030-003-1052-7. |
[24] |
A. Mielke, F. Theil and V. Levitas, A variational formulation of rate-independent phase transformations using extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177.doi: 10.1007/s002050200194. |
[25] |
T. Roubíček and M. Kružík, Microstructure evolution model in micromagnetics, Z. Angew. Math. Phys., 55 (2004), 159-182.doi: 10.1007/s00033-003-0110-7. |
[26] |
T. Roubíček and M. Kružík, Mesoscopic model for ferromagnets with isotropic hardening, Z. Angew. Math. Phys., 56 (2005), 107-135.doi: 10.1007/s00033-003-2108-6. |
[27] |
P. Rybka and M. Luskin, Existence of energy minimizers for magnetostrictive materials, SIAM J. Math. Anal., 36 (2005), 2004-2019.doi: 10.1137/S0036141004442021. |