-
Previous Article
Deriving amplitude equations via evolutionary $\Gamma$-convergence
- DCDS Home
- This Issue
-
Next Article
Control of crack propagation by shape-topological optimization
A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality
1. | Dept. of Mathematical Information Technology, Faculty of Information Technology, C321.4, Agora, P.O. Box 35, FI-40014, University of Jyväskylä, Finland |
2. | Dept. of Mathematical Information Technology, Faculty of Information Technology, Agora, P.O. Box 35, FI-40014, University of Jyväskylä, Finland, Finland |
References:
[1] |
G. Acosta and R. G. Durán, An optimal Poincaré inequality in $L^1$ for convex domains,, Proc. Amer. Math. Soc., 132 (2004), 195.
doi: 10.1090/S0002-9939-03-07004-7. |
[2] |
M. Bebendorf, A note on the Poincaré inequality for convex domains,, Z. Anal. Anwendungen, 22 (2003), 751.
doi: 10.4171/ZAA/1170. |
[3] |
L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (2010).
|
[4] |
O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics,, in Applied Mathematical Sciences (eds. E.H. Zarantonello and Author 2), (1985).
doi: 10.1007/978-1-4757-4317-3. |
[5] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type,, Nauka, (1967). Google Scholar |
[6] |
R. S. Laugesen and B. A. Siudeja, Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality,, J. Differential Equations, 249 (2010), 118.
doi: 10.1016/j.jde.2010.02.020. |
[7] |
O. Mali and P. Neittaanmäki and S. Repin, Accuracy Verification Methods. Theory and Algorithms, Computational Methods in Applied Sciences, 32,, Springer, (2014).
doi: 10.1007/978-94-007-7581-7. |
[8] |
S. Matculevich and S. Repin, Computable estimates of the distance to the exact solution of the evolutionary reaction-diffusion equation,, Appl. Math. Comput., 247 (2014), 329.
doi: 10.1016/j.amc.2014.08.055. |
[9] |
P. Neittaanmäki and S. Repin, Reliable methods for computer simulation, error control and a posteriori estimates,, in Studies in Mathematics and its Applications, (2004).
|
[10] |
P. Neittaanmäki and P. S. Repin, A posteriori error majorants for approximations of the evolutionary Stokes problem,, J. Numer. Math., 18 (2010), 119.
doi: 10.1515/JNUM.2010.005. |
[11] |
P. Neittaanmäki and S. Repin, Guaranteed error bounds for conforming approximations of a Maxwell type problem,, in Comput. Methods Appl. Sci., (2010), 199.
doi: 10.1007/978-90-481-3239-3_15. |
[12] |
L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains,, Arch. Rational Mech. Anal., 5 (1960), 286.
doi: 10.1007/BF00252910. |
[13] |
S. I. Repin, Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation,, Rend. Mat. Acc. Lincei, 13 (2002), 121.
|
[14] |
S. Repin, A posteriori estimates for partial differential equations,, in Radon Series on Computational and Applied Mathematics, (2008).
doi: 10.1515/9783110203042. |
[15] |
S. Repin and S. Sauter, Functional a posteriori estimates for the reaction-diffusion problem,, C. R. Acad. Sci. Paris, 343 (2006), 349.
doi: 10.1016/j.crma.2006.06.024. |
[16] |
S. Repin and S. K. Tomar, A posteriori error estimates for approximations of evolutionary convection-diffusion problems,, J. Math. Sci. (N. Y.), 170 (2010), 554.
doi: 10.1007/s10958-010-0100-1. |
show all references
References:
[1] |
G. Acosta and R. G. Durán, An optimal Poincaré inequality in $L^1$ for convex domains,, Proc. Amer. Math. Soc., 132 (2004), 195.
doi: 10.1090/S0002-9939-03-07004-7. |
[2] |
M. Bebendorf, A note on the Poincaré inequality for convex domains,, Z. Anal. Anwendungen, 22 (2003), 751.
doi: 10.4171/ZAA/1170. |
[3] |
L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (2010).
|
[4] |
O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics,, in Applied Mathematical Sciences (eds. E.H. Zarantonello and Author 2), (1985).
doi: 10.1007/978-1-4757-4317-3. |
[5] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type,, Nauka, (1967). Google Scholar |
[6] |
R. S. Laugesen and B. A. Siudeja, Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality,, J. Differential Equations, 249 (2010), 118.
doi: 10.1016/j.jde.2010.02.020. |
[7] |
O. Mali and P. Neittaanmäki and S. Repin, Accuracy Verification Methods. Theory and Algorithms, Computational Methods in Applied Sciences, 32,, Springer, (2014).
doi: 10.1007/978-94-007-7581-7. |
[8] |
S. Matculevich and S. Repin, Computable estimates of the distance to the exact solution of the evolutionary reaction-diffusion equation,, Appl. Math. Comput., 247 (2014), 329.
doi: 10.1016/j.amc.2014.08.055. |
[9] |
P. Neittaanmäki and S. Repin, Reliable methods for computer simulation, error control and a posteriori estimates,, in Studies in Mathematics and its Applications, (2004).
|
[10] |
P. Neittaanmäki and P. S. Repin, A posteriori error majorants for approximations of the evolutionary Stokes problem,, J. Numer. Math., 18 (2010), 119.
doi: 10.1515/JNUM.2010.005. |
[11] |
P. Neittaanmäki and S. Repin, Guaranteed error bounds for conforming approximations of a Maxwell type problem,, in Comput. Methods Appl. Sci., (2010), 199.
doi: 10.1007/978-90-481-3239-3_15. |
[12] |
L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains,, Arch. Rational Mech. Anal., 5 (1960), 286.
doi: 10.1007/BF00252910. |
[13] |
S. I. Repin, Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation,, Rend. Mat. Acc. Lincei, 13 (2002), 121.
|
[14] |
S. Repin, A posteriori estimates for partial differential equations,, in Radon Series on Computational and Applied Mathematics, (2008).
doi: 10.1515/9783110203042. |
[15] |
S. Repin and S. Sauter, Functional a posteriori estimates for the reaction-diffusion problem,, C. R. Acad. Sci. Paris, 343 (2006), 349.
doi: 10.1016/j.crma.2006.06.024. |
[16] |
S. Repin and S. K. Tomar, A posteriori error estimates for approximations of evolutionary convection-diffusion problems,, J. Math. Sci. (N. Y.), 170 (2010), 554.
doi: 10.1007/s10958-010-0100-1. |
[1] |
Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010 |
[2] |
Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055 |
[3] |
Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761 |
[4] |
Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029 |
[5] |
Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69 |
[6] |
Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99. |
[7] |
Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977 |
[8] |
Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041 |
[9] |
Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6031-6068. doi: 10.3934/dcds.2015.35.6031 |
[10] |
D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499 |
[11] |
Yutian Lei. Wolff type potential estimates and application to nonlinear equations with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2067-2078. doi: 10.3934/dcds.2015.35.2067 |
[12] |
Y. Efendiev, Alexander Pankov. Meyers type estimates for approximate solutions of nonlinear elliptic equations and their applications. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 481-492. doi: 10.3934/dcdsb.2006.6.481 |
[13] |
Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121 |
[14] |
Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237 |
[15] |
Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013 |
[16] |
Maria Colombo, Gianluca Crippa, Stefano Spirito. Logarithmic estimates for continuity equations. Networks & Heterogeneous Media, 2016, 11 (2) : 301-311. doi: 10.3934/nhm.2016.11.301 |
[17] |
Nobuyuki Kato, Norio Kikuchi. Campanato-type boundary estimates for Rothe's scheme to parabolic partial differential systems with constant coefficients. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 737-760. doi: 10.3934/dcds.2007.19.737 |
[18] |
Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755 |
[19] |
Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313 |
[20] |
Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]