• Previous Article
    Implicit functions and parametrizations in dimension three: Generalized solutions
  • DCDS Home
  • This Issue
  • Next Article
    A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality
June  2015, 35(6): 2679-2700. doi: 10.3934/dcds.2015.35.2679

Deriving amplitude equations via evolutionary $\Gamma$-convergence

1. 

Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Germany

Received  January 2014 Revised  March 2014 Published  December 2014

We discuss the justification of the Ginzburg-Landau equation with real coefficients as an amplitude equation for the weakly unstable one-dimensional Swift-Hohenberg equation. In contrast to classical justification approaches we employ the method of evolutionary $\Gamma$-convergence by reformulating both equations as gradient systems. Using a suitable linear transformation we show $\Gamma$-convergence of the associated energies in suitable function spaces.
    The limit passage of the time-dependent problem relies on the recent theory of evolutionary variational inequalities for families of uniformly convex functionals as developed by Daneri and Savaré 2010. In the case of a cubic energy it suffices that the initial conditions converge strongly in $L^2$, while for the case of a quadratic nonlinearity we need to impose weak convergence in $H^1$. However, we do not need well-preparedness of the initial conditions.
Citation: Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,, Lectures in Mathematics ETH Zürich, (2005).   Google Scholar

[2]

P. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach,, C. R. Acad. Sci. Paris Sér. A-B, 274 (1972).   Google Scholar

[3]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert,, North-Holland Publishing Co., (1973).   Google Scholar

[4]

P. Collet and J.-P. Eckmann, The time dependent amplitude equation for the Swift-Hohenberg problem,, Comm. Math. Phys., 132 (1990), 139.  doi: 10.1007/BF02278004.  Google Scholar

[5]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser Boston Inc., (1993).  doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[6]

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport (Chap. 6),, in Optimal Transportation (eds. Y. Ollivier, (2014), 100.  doi: 10.1017/CBO9781107297296.007.  Google Scholar

[7]

W. Eckhaus, Studies in Non-Linear Stability Theory,, Springer-Verlag New York, (1965).   Google Scholar

[8]

W. Eckhaus, The Ginzburg-Landau manifold is an attractor,, J. Nonlinear Sci., 3 (1993), 329.  doi: 10.1007/BF02429869.  Google Scholar

[9]

R. B. Guenther, P. Krejčí and J. Sprekels, Small strain oscillations of an elastoplastic Kirchhoff plate,, Z. angew. Math. Mech. (ZAMM), 88 (2008), 199.  doi: 10.1002/zamm.200700111.  Google Scholar

[10]

H. Hanke, Homogenization in gradient plasticity,, Math. Models Meth. Appl. Sci. (M$^3$AS), 21 (2011), 1651.  doi: 10.1142/S0218202511005520.  Google Scholar

[11]

P. Kirrmann, G. Schneider and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities,, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 85.  doi: 10.1017/S0308210500020989.  Google Scholar

[12]

P. Krejčí and J. Sprekels, Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Math. Methods Appl. Sci. (MMAS), 30 (2007), 2371.  doi: 10.1002/mma.892.  Google Scholar

[13]

P. Krejčí and J. Sprekels, Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Discr. Cont. Dynam. Systems Ser. S, 1 (2008), 283.  doi: 10.3934/dcdss.2008.1.283.  Google Scholar

[14]

W. McLean and D. Elliott, On the $p$-norm of the truncated Hilbert transform,, Bull. Austral. Math. Soc., 38 (1988), 413.  doi: 10.1017/S0004972700027799.  Google Scholar

[15]

A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation,, in Handbook of Dynamical Systems II (ed. B. Fiedler), 2 (2002), 759.  doi: 10.1016/S1874-575X(02)80036-4.  Google Scholar

[16]

A. Mielke and G. Schneider, Derivation and justification of the complex Ginzburg-Landau equation as a modulation equation,, in Dynamical systems and probabilistic methods in partial differential equations (Berkeley, 31 (1996), 191.   Google Scholar

[17]

A. Mielke, G. Schneider and A. Ziegra, Comparison of inertial manifolds and application to modulated systems,, Math. Nachr., 214 (2000), 53.  doi: 10.1002/1522-2616(200006)214:1<53::AID-MANA53>3.0.CO;2-4.  Google Scholar

[18]

A. Mielke, On evolutionary $\Gamma$-convergence for gradient systems,, WIAS Preprint 1915, (1915).   Google Scholar

[19]

A. Mielke, S. Reichelt and M. Thomas, Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion,, Networks Heterg. Materials, 9 (2014), 353.  doi: 10.3934/nhm.2014.9.353.  Google Scholar

[20]

A. Mielke, R. Rossi and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations,, Calc. Var. Part. Diff. Eqns., 46 (2013), 253.  doi: 10.1007/s00526-011-0482-z.  Google Scholar

[21]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau,, Comm. Pure Appl. Math., 57 (2004), 1627.  doi: 10.1002/cpa.20046.  Google Scholar

[22]

G. Savaré, Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds,, Unpublished extended version (2011, 345 (2007), 151.  doi: 10.1016/j.crma.2007.06.018.  Google Scholar

[23]

G. Schneider, Error estimates for the Ginzburg-Landau approximation,, Z. angew. Math. Phys., 45 (1994), 433.  doi: 10.1007/BF00945930.  Google Scholar

[24]

G. Schneider, Justification of modulation equations for hyperbolic systems via normal forms,, NoDEA Nonlinear Differential Equations Appl., 5 (1998), 69.  doi: 10.1007/s000300050034.  Google Scholar

[25]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert spaces and metric spaces and applications,, Discr. Cont. Dynam. Systems Ser. A, 31 (2011), 1427.  doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[26]

A. van Harten, On the validity of the Ginzburg-Landau equation,, J. Nonlinear Sci., 1 (1991), 397.  doi: 10.1007/BF02429847.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,, Lectures in Mathematics ETH Zürich, (2005).   Google Scholar

[2]

P. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach,, C. R. Acad. Sci. Paris Sér. A-B, 274 (1972).   Google Scholar

[3]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert,, North-Holland Publishing Co., (1973).   Google Scholar

[4]

P. Collet and J.-P. Eckmann, The time dependent amplitude equation for the Swift-Hohenberg problem,, Comm. Math. Phys., 132 (1990), 139.  doi: 10.1007/BF02278004.  Google Scholar

[5]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser Boston Inc., (1993).  doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[6]

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport (Chap. 6),, in Optimal Transportation (eds. Y. Ollivier, (2014), 100.  doi: 10.1017/CBO9781107297296.007.  Google Scholar

[7]

W. Eckhaus, Studies in Non-Linear Stability Theory,, Springer-Verlag New York, (1965).   Google Scholar

[8]

W. Eckhaus, The Ginzburg-Landau manifold is an attractor,, J. Nonlinear Sci., 3 (1993), 329.  doi: 10.1007/BF02429869.  Google Scholar

[9]

R. B. Guenther, P. Krejčí and J. Sprekels, Small strain oscillations of an elastoplastic Kirchhoff plate,, Z. angew. Math. Mech. (ZAMM), 88 (2008), 199.  doi: 10.1002/zamm.200700111.  Google Scholar

[10]

H. Hanke, Homogenization in gradient plasticity,, Math. Models Meth. Appl. Sci. (M$^3$AS), 21 (2011), 1651.  doi: 10.1142/S0218202511005520.  Google Scholar

[11]

P. Kirrmann, G. Schneider and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities,, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 85.  doi: 10.1017/S0308210500020989.  Google Scholar

[12]

P. Krejčí and J. Sprekels, Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Math. Methods Appl. Sci. (MMAS), 30 (2007), 2371.  doi: 10.1002/mma.892.  Google Scholar

[13]

P. Krejčí and J. Sprekels, Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Discr. Cont. Dynam. Systems Ser. S, 1 (2008), 283.  doi: 10.3934/dcdss.2008.1.283.  Google Scholar

[14]

W. McLean and D. Elliott, On the $p$-norm of the truncated Hilbert transform,, Bull. Austral. Math. Soc., 38 (1988), 413.  doi: 10.1017/S0004972700027799.  Google Scholar

[15]

A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation,, in Handbook of Dynamical Systems II (ed. B. Fiedler), 2 (2002), 759.  doi: 10.1016/S1874-575X(02)80036-4.  Google Scholar

[16]

A. Mielke and G. Schneider, Derivation and justification of the complex Ginzburg-Landau equation as a modulation equation,, in Dynamical systems and probabilistic methods in partial differential equations (Berkeley, 31 (1996), 191.   Google Scholar

[17]

A. Mielke, G. Schneider and A. Ziegra, Comparison of inertial manifolds and application to modulated systems,, Math. Nachr., 214 (2000), 53.  doi: 10.1002/1522-2616(200006)214:1<53::AID-MANA53>3.0.CO;2-4.  Google Scholar

[18]

A. Mielke, On evolutionary $\Gamma$-convergence for gradient systems,, WIAS Preprint 1915, (1915).   Google Scholar

[19]

A. Mielke, S. Reichelt and M. Thomas, Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion,, Networks Heterg. Materials, 9 (2014), 353.  doi: 10.3934/nhm.2014.9.353.  Google Scholar

[20]

A. Mielke, R. Rossi and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations,, Calc. Var. Part. Diff. Eqns., 46 (2013), 253.  doi: 10.1007/s00526-011-0482-z.  Google Scholar

[21]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau,, Comm. Pure Appl. Math., 57 (2004), 1627.  doi: 10.1002/cpa.20046.  Google Scholar

[22]

G. Savaré, Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds,, Unpublished extended version (2011, 345 (2007), 151.  doi: 10.1016/j.crma.2007.06.018.  Google Scholar

[23]

G. Schneider, Error estimates for the Ginzburg-Landau approximation,, Z. angew. Math. Phys., 45 (1994), 433.  doi: 10.1007/BF00945930.  Google Scholar

[24]

G. Schneider, Justification of modulation equations for hyperbolic systems via normal forms,, NoDEA Nonlinear Differential Equations Appl., 5 (1998), 69.  doi: 10.1007/s000300050034.  Google Scholar

[25]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert spaces and metric spaces and applications,, Discr. Cont. Dynam. Systems Ser. A, 31 (2011), 1427.  doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[26]

A. van Harten, On the validity of the Ginzburg-Landau equation,, J. Nonlinear Sci., 1 (1991), 397.  doi: 10.1007/BF02429847.  Google Scholar

[1]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[2]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[3]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[4]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[5]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[6]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[7]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[8]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[9]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[10]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[11]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[12]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[17]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

[18]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[19]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[20]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (121)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]