• Previous Article
    Implicit functions and parametrizations in dimension three: Generalized solutions
  • DCDS Home
  • This Issue
  • Next Article
    A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality
June  2015, 35(6): 2679-2700. doi: 10.3934/dcds.2015.35.2679

Deriving amplitude equations via evolutionary $\Gamma$-convergence

1. 

Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Germany

Received  January 2014 Revised  March 2014 Published  December 2014

We discuss the justification of the Ginzburg-Landau equation with real coefficients as an amplitude equation for the weakly unstable one-dimensional Swift-Hohenberg equation. In contrast to classical justification approaches we employ the method of evolutionary $\Gamma$-convergence by reformulating both equations as gradient systems. Using a suitable linear transformation we show $\Gamma$-convergence of the associated energies in suitable function spaces.
    The limit passage of the time-dependent problem relies on the recent theory of evolutionary variational inequalities for families of uniformly convex functionals as developed by Daneri and Savaré 2010. In the case of a cubic energy it suffices that the initial conditions converge strongly in $L^2$, while for the case of a quadratic nonlinearity we need to impose weak convergence in $H^1$. However, we do not need well-preparedness of the initial conditions.
Citation: Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,, Lectures in Mathematics ETH Zürich, (2005). Google Scholar

[2]

P. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach,, C. R. Acad. Sci. Paris Sér. A-B, 274 (1972). Google Scholar

[3]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert,, North-Holland Publishing Co., (1973). Google Scholar

[4]

P. Collet and J.-P. Eckmann, The time dependent amplitude equation for the Swift-Hohenberg problem,, Comm. Math. Phys., 132 (1990), 139. doi: 10.1007/BF02278004. Google Scholar

[5]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser Boston Inc., (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[6]

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport (Chap. 6),, in Optimal Transportation (eds. Y. Ollivier, (2014), 100. doi: 10.1017/CBO9781107297296.007. Google Scholar

[7]

W. Eckhaus, Studies in Non-Linear Stability Theory,, Springer-Verlag New York, (1965). Google Scholar

[8]

W. Eckhaus, The Ginzburg-Landau manifold is an attractor,, J. Nonlinear Sci., 3 (1993), 329. doi: 10.1007/BF02429869. Google Scholar

[9]

R. B. Guenther, P. Krejčí and J. Sprekels, Small strain oscillations of an elastoplastic Kirchhoff plate,, Z. angew. Math. Mech. (ZAMM), 88 (2008), 199. doi: 10.1002/zamm.200700111. Google Scholar

[10]

H. Hanke, Homogenization in gradient plasticity,, Math. Models Meth. Appl. Sci. (M$^3$AS), 21 (2011), 1651. doi: 10.1142/S0218202511005520. Google Scholar

[11]

P. Kirrmann, G. Schneider and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities,, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 85. doi: 10.1017/S0308210500020989. Google Scholar

[12]

P. Krejčí and J. Sprekels, Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Math. Methods Appl. Sci. (MMAS), 30 (2007), 2371. doi: 10.1002/mma.892. Google Scholar

[13]

P. Krejčí and J. Sprekels, Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Discr. Cont. Dynam. Systems Ser. S, 1 (2008), 283. doi: 10.3934/dcdss.2008.1.283. Google Scholar

[14]

W. McLean and D. Elliott, On the $p$-norm of the truncated Hilbert transform,, Bull. Austral. Math. Soc., 38 (1988), 413. doi: 10.1017/S0004972700027799. Google Scholar

[15]

A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation,, in Handbook of Dynamical Systems II (ed. B. Fiedler), 2 (2002), 759. doi: 10.1016/S1874-575X(02)80036-4. Google Scholar

[16]

A. Mielke and G. Schneider, Derivation and justification of the complex Ginzburg-Landau equation as a modulation equation,, in Dynamical systems and probabilistic methods in partial differential equations (Berkeley, 31 (1996), 191. Google Scholar

[17]

A. Mielke, G. Schneider and A. Ziegra, Comparison of inertial manifolds and application to modulated systems,, Math. Nachr., 214 (2000), 53. doi: 10.1002/1522-2616(200006)214:1<53::AID-MANA53>3.0.CO;2-4. Google Scholar

[18]

A. Mielke, On evolutionary $\Gamma$-convergence for gradient systems,, WIAS Preprint 1915, (1915). Google Scholar

[19]

A. Mielke, S. Reichelt and M. Thomas, Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion,, Networks Heterg. Materials, 9 (2014), 353. doi: 10.3934/nhm.2014.9.353. Google Scholar

[20]

A. Mielke, R. Rossi and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations,, Calc. Var. Part. Diff. Eqns., 46 (2013), 253. doi: 10.1007/s00526-011-0482-z. Google Scholar

[21]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau,, Comm. Pure Appl. Math., 57 (2004), 1627. doi: 10.1002/cpa.20046. Google Scholar

[22]

G. Savaré, Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds,, Unpublished extended version (2011, 345 (2007), 151. doi: 10.1016/j.crma.2007.06.018. Google Scholar

[23]

G. Schneider, Error estimates for the Ginzburg-Landau approximation,, Z. angew. Math. Phys., 45 (1994), 433. doi: 10.1007/BF00945930. Google Scholar

[24]

G. Schneider, Justification of modulation equations for hyperbolic systems via normal forms,, NoDEA Nonlinear Differential Equations Appl., 5 (1998), 69. doi: 10.1007/s000300050034. Google Scholar

[25]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert spaces and metric spaces and applications,, Discr. Cont. Dynam. Systems Ser. A, 31 (2011), 1427. doi: 10.3934/dcds.2011.31.1427. Google Scholar

[26]

A. van Harten, On the validity of the Ginzburg-Landau equation,, J. Nonlinear Sci., 1 (1991), 397. doi: 10.1007/BF02429847. Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,, Lectures in Mathematics ETH Zürich, (2005). Google Scholar

[2]

P. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach,, C. R. Acad. Sci. Paris Sér. A-B, 274 (1972). Google Scholar

[3]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert,, North-Holland Publishing Co., (1973). Google Scholar

[4]

P. Collet and J.-P. Eckmann, The time dependent amplitude equation for the Swift-Hohenberg problem,, Comm. Math. Phys., 132 (1990), 139. doi: 10.1007/BF02278004. Google Scholar

[5]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser Boston Inc., (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[6]

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport (Chap. 6),, in Optimal Transportation (eds. Y. Ollivier, (2014), 100. doi: 10.1017/CBO9781107297296.007. Google Scholar

[7]

W. Eckhaus, Studies in Non-Linear Stability Theory,, Springer-Verlag New York, (1965). Google Scholar

[8]

W. Eckhaus, The Ginzburg-Landau manifold is an attractor,, J. Nonlinear Sci., 3 (1993), 329. doi: 10.1007/BF02429869. Google Scholar

[9]

R. B. Guenther, P. Krejčí and J. Sprekels, Small strain oscillations of an elastoplastic Kirchhoff plate,, Z. angew. Math. Mech. (ZAMM), 88 (2008), 199. doi: 10.1002/zamm.200700111. Google Scholar

[10]

H. Hanke, Homogenization in gradient plasticity,, Math. Models Meth. Appl. Sci. (M$^3$AS), 21 (2011), 1651. doi: 10.1142/S0218202511005520. Google Scholar

[11]

P. Kirrmann, G. Schneider and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities,, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 85. doi: 10.1017/S0308210500020989. Google Scholar

[12]

P. Krejčí and J. Sprekels, Elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Math. Methods Appl. Sci. (MMAS), 30 (2007), 2371. doi: 10.1002/mma.892. Google Scholar

[13]

P. Krejčí and J. Sprekels, Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators,, Discr. Cont. Dynam. Systems Ser. S, 1 (2008), 283. doi: 10.3934/dcdss.2008.1.283. Google Scholar

[14]

W. McLean and D. Elliott, On the $p$-norm of the truncated Hilbert transform,, Bull. Austral. Math. Soc., 38 (1988), 413. doi: 10.1017/S0004972700027799. Google Scholar

[15]

A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation,, in Handbook of Dynamical Systems II (ed. B. Fiedler), 2 (2002), 759. doi: 10.1016/S1874-575X(02)80036-4. Google Scholar

[16]

A. Mielke and G. Schneider, Derivation and justification of the complex Ginzburg-Landau equation as a modulation equation,, in Dynamical systems and probabilistic methods in partial differential equations (Berkeley, 31 (1996), 191. Google Scholar

[17]

A. Mielke, G. Schneider and A. Ziegra, Comparison of inertial manifolds and application to modulated systems,, Math. Nachr., 214 (2000), 53. doi: 10.1002/1522-2616(200006)214:1<53::AID-MANA53>3.0.CO;2-4. Google Scholar

[18]

A. Mielke, On evolutionary $\Gamma$-convergence for gradient systems,, WIAS Preprint 1915, (1915). Google Scholar

[19]

A. Mielke, S. Reichelt and M. Thomas, Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion,, Networks Heterg. Materials, 9 (2014), 353. doi: 10.3934/nhm.2014.9.353. Google Scholar

[20]

A. Mielke, R. Rossi and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations,, Calc. Var. Part. Diff. Eqns., 46 (2013), 253. doi: 10.1007/s00526-011-0482-z. Google Scholar

[21]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau,, Comm. Pure Appl. Math., 57 (2004), 1627. doi: 10.1002/cpa.20046. Google Scholar

[22]

G. Savaré, Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds,, Unpublished extended version (2011, 345 (2007), 151. doi: 10.1016/j.crma.2007.06.018. Google Scholar

[23]

G. Schneider, Error estimates for the Ginzburg-Landau approximation,, Z. angew. Math. Phys., 45 (1994), 433. doi: 10.1007/BF00945930. Google Scholar

[24]

G. Schneider, Justification of modulation equations for hyperbolic systems via normal forms,, NoDEA Nonlinear Differential Equations Appl., 5 (1998), 69. doi: 10.1007/s000300050034. Google Scholar

[25]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert spaces and metric spaces and applications,, Discr. Cont. Dynam. Systems Ser. A, 31 (2011), 1427. doi: 10.3934/dcds.2011.31.1427. Google Scholar

[26]

A. van Harten, On the validity of the Ginzburg-Landau equation,, J. Nonlinear Sci., 1 (1991), 397. doi: 10.1007/BF02429847. Google Scholar

[1]

J. Burke, Edgar Knobloch. Multipulse states in the Swift-Hohenberg equation. Conference Publications, 2009, 2009 (Special) : 109-117. doi: 10.3934/proc.2009.2009.109

[2]

Jongmin Han, Masoud Yari. Dynamic bifurcation of the complex Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 875-891. doi: 10.3934/dcdsb.2009.11.875

[3]

Peng Gao. Averaging principles for the Swift-Hohenberg equation. Communications on Pure & Applied Analysis, 2020, 19 (1) : 293-310. doi: 10.3934/cpaa.2020016

[4]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Doo Seok Lee. Bifurcation and final patterns of a modified Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2543-2567. doi: 10.3934/dcdsb.2017087

[5]

Ling-Jun Wang. The dynamics of small amplitude solutions of the Swift-Hohenberg equation on a large interval. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1129-1156. doi: 10.3934/cpaa.2012.11.1129

[6]

Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071

[7]

Shengfu Deng. Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1647-1662. doi: 10.3934/dcdss.2016068

[8]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[9]

Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273

[10]

Jongmin Han, Chun-Hsiung Hsia. Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2431-2449. doi: 10.3934/dcdsb.2012.17.2431

[11]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[12]

Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075

[13]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[14]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[15]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[16]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[17]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[18]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[19]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[20]

Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]