\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Implicit functions and parametrizations in dimension three: Generalized solutions

Abstract Related Papers Cited by
  • We introduce a general local parametrization for the solution of the implicit equation $f(x,y,z)=0$ by using Hamiltonian systems. The approach extends previous work of the authors and is valid in the critical case as well.
    Mathematics Subject Classification: 26B10, 34A12, 53A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Barbu, Ecuatii Diferenţiale, Ed. Junimea, Iaşi, 1985.

    [2]

    G. Crippa, The Flow Associated to Weakly Differentiable Vector Fields, Publ. of the Sc. Norm. Sup. 12, Pisa, 2009.

    [3]

    R. J. DiPerna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, 98, (1989), 511-547.doi: 10.1007/BF01393835.

    [4]

    K. Dobiasova, Parametrizing implicit curves, WDS'08 Proceedings of Contributed Papers, MATHFYZPRESS, (2008), 19-22.

    [5]

    A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer, 2009.doi: 10.1007/978-0-387-87821-8.

    [6]

    X.-S. Gao, Search methods revisited, Mathematics mechanization and applications, Academic Press, San Diego, (2000), 253-271.doi: 10.1016/B978-012734760-8/50011-9.

    [7]

    P. Hartman, Ordinary Differential Equations, J. Wiley & Sons, New York, 1964.

    [8]

    S. G. Krantz and H. R. Parks, The Implicit Function Theorem, Birkhäuser, Boston, 2002.doi: 10.1007/978-1-4612-0059-8.

    [9]

    P. Neittaanmaki, A. Pennanen and D. Tiba, Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions, Inverse Problems, 25 (2009), 1-18.doi: 10.1088/0266-5611/25/5/055003.

    [10]

    P. Neittaanmaki, J. Sprekels and D. Tiba, Optimization of Elliptic Systems. Theory and Applications, Springer Monographs in Mathematics. Springer, New York, 2006.

    [11]

    P. Neittaanmaki and D. Tiba, Fixed domain approaches in shape optimization problems, Inverse Problems, 28 (2012), 1-35.doi: 10.1088/0266-5611/28/9/093001.

    [12]

    P. Philip and D. Tiba, A penalization and regularization technique in shape optimization, SIAM J. Control Optim, 51 (2013), 4295-4317.doi: 10.1137/120892131.

    [13]

    J. Schicho, Rational Parametrizations of Algebraic Surfaces, Thesis, Kepler Univ. Linz, 1995.

    [14]

    J. A. Thorpe, Elementary Topics in Differential Geometry, Springer, New York, 1979.

    [15]

    D. Tiba, The implicit functions theorem and implicit parametrizations, Ann. Acad. Rom. Sci. Ser. Math. Appl., 5 (2013), 193-208; http://www.mathematics-and-its-applications.com

    [16]

    D. Wang, Irreducible decomposition of algebraic varieties via characteristic set method and Gröbner basis method, Comput. Aided Geom. Design, 9 (1992), 471-484.doi: 10.1016/0167-8396(92)90045-Q.

    [17]

    H. Yang, B. Jüttler and L. Gonzalez-Vega, An evolution-based approach for approximate parametrization of implicitly defined curves by polynomial parametric spline curves, Math. Comp. Sci., 4 (2010), 463-479.doi: 10.1007/s11786-011-0070-9.

    [18]

    E. Zuazua, Log-Lipschitz regularity and uniqueness of the flow for a field in $[W_{loc}^{n/p+1} (R^n)]^n$, C. R. Math. Acad. Sci. Paris, 335 (2002), 17-22.doi: 10.1016/S1631-073X(02)02426-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(331) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return