-
Previous Article
Weak structural stability of pseudo-monotone equations
- DCDS Home
- This Issue
-
Next Article
The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation
Uniform Poincaré-Sobolev and isoperimetric inequalities for classes of domains
1. | Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin |
References:
[1] |
G. Acosta and R. Durán, An optimal Poincaré inequality in $L^1$ for convex domains,, Proceedings of the American Mathematical Society, 132 (2004), 195.
doi: 10.1090/S0002-9939-03-07004-7. |
[2] |
R. Adams, Sobolev Spaces,, Academic Press, (1975).
|
[3] |
R. Adams and J. Fournier, Cone conditions and properties of Sobolev spaces,, J. Math. Anal. Appl., 61 (1977), 713.
doi: 10.1016/0022-247X(77)90173-1. |
[4] |
R. Adams and J. Fournier, Sobolev Spaces,, 2nd edition, (2003).
|
[5] |
S. Agmon, Lectures on Elliptic Boundary Value Problems,, D. Van Nostrand Company, (1965).
|
[6] |
S. Bartels, A. Mielke and T. Roubíček, Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation,, SIAM J. Numer. Anal., 50 (2012), 951.
doi: 10.1137/100819205. |
[7] |
A. Boulkhemair and A. Chakib, On the uniform Poincaré inequality,, Commum. Part. Diff. Equat., 32 (2007), 1439.
doi: 10.1080/03605300600910241. |
[8] |
Y. Burago and V. Zalgaller, Geometric Inequalities,, Grundlehren der Mathematischen Wissenschaften, (1988).
doi: 10.1007/978-3-662-07441-1. |
[9] |
G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Ration. Mech. Anal., 92 (1986), 205.
doi: 10.1007/BF00254827. |
[10] |
D. Chenais, On the existence of a solution in a domain identification problem,, J. Math. Anal. Appl., 52 (1975), 189.
doi: 10.1016/0022-247X(75)90091-8. |
[11] |
D. Chenais, Sur une famille de variétés a bord lipschitziennes. application à un problème d' identification de domaines,, Annales de'l Institut Fourier, 27 (1977), 201.
doi: 10.5802/aif.676. |
[12] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, A temperature-dependent phase segregation problem of the Allen-Cahn type,, Adv. Math. Sci. Appl., 20 (2010), 219.
|
[13] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system,, SIAM J. Appl. Math., 71 (2011), 1849.
doi: 10.1137/110828526. |
[14] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Global existence for a strongly coupled Cahn-Hilliard system with viscosity,, Boll. Unione Mat. Ital., 5 (2012), 495.
|
[15] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 353.
|
[16] |
G. Colombo and K. Nguyen, Quantitative isoperimetric inequalities for a class of nonconvex sets,, Calc. Var., 37 (2010), 141.
doi: 10.1007/s00526-009-0256-z. |
[17] |
G. Dal Maso, A. DeSimone and M. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials,, Arch. Ration. Mech. Anal., 180 (2006), 237.
doi: 10.1007/s00205-005-0407-0. |
[18] |
G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165.
doi: 10.1007/s00205-004-0351-4. |
[19] |
A. DeSimone and M. Kružík, Domain patterns and hysteresis in phase-transforming solids: analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation,, Networks and Heterogeneous Media, 8 (2013), 481.
doi: 10.3934/nhm.2013.8.481. |
[20] |
W. Dreyer and C. Guhlke, Sharp limit of the viscous Cahn-Hilliard equation and thermodynamic consistency,, WIAS-Preprint 1771., (1771). Google Scholar |
[21] |
L. Esposito, V. Ferone, B. Kawohl, C. Nitsch and C. Trombetti, The longest shortest fence and sharp Poincaré-Sobolev inequalities,, Arch. Ration. Mech. Anal., 206 (2012), 821.
doi: 10.1007/s00205-012-0545-0. |
[22] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).
|
[23] |
E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to some models of phase changes with microscopic movements,, Math. Meth. Appl. Sci., 32 (2009), 1345.
doi: 10.1002/mma.1089. |
[24] |
A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities,, Invent math., 182 (2010), 167.
doi: 10.1007/s00222-010-0261-z. |
[25] |
G. Francfort and J.-J. Marigo, Stable damage evolution in a brittle continuous medium,, Eur. J. Mech., 12 (1993), 149.
|
[26] |
S. Frigeri, M. Grasselli and Krejčí, Strong solutions for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems,, J. Differential Equations, 255 (2013), 2587.
doi: 10.1016/j.jde.2013.07.016. |
[27] |
B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in $\mathbbR^n$,, Transactions of the American Mathematical Society, 314 (1989), 619.
doi: 10.2307/2001401. |
[28] |
N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative Sobolev inequality for functions of bounded variation,, Journal of Functional Analysis, 244 (2007), 315.
doi: 10.1016/j.jfa.2006.10.015. |
[29] |
N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality,, Annals of Mathematics, 168 (2008), 941.
doi: 10.4007/annals.2008.168.941. |
[30] |
H. Gajewski, An application of eigenfunctions of $p$-Laplacians to domain separation,, Mathematica Bohemica, 126 (2001), 395.
|
[31] |
H. Gajewski and K. Gärtner, Domain separation by means of sign changing eigenfunctions of $p$-Laplacians,, Appl. Anal., 79 (2001), 483.
doi: 10.1080/00036810108840974. |
[32] |
H. Gajewski and K. Gärtner, Domain separation by means of sign changing eigenfunctions of $p$-Laplacians, II,, Nonlinear Anal., 52 (2003), 291. Google Scholar |
[33] |
H. Garcke and C. Kraus, An inhomogeneous, anisotropic, elastically modified Gibbs-Thomson law as singular limit of a diffuse interface model,, AMSA, 20 (2010), 511.
|
[34] |
A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fracture,, Calc. Var. Partial Differential Equations, 22 (2005), 129.
doi: 10.1007/s00526-004-0269-6. |
[35] |
J. Griepentrog, K. Gröger, H.-K. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary value problems,, Mathematische Nachrichten, 241 (2002), 110.
doi: 10.1002/1522-2616(200207)241:1<110::AID-MANA110>3.0.CO;2-R. |
[36] |
J. Griepentrog and L. Recke, Linear elliptic boundary value problems with non-smooth data: Normal solvability on sobolev-campanato spaces,, Mathematische Nachrichten, 225 (2001), 39.
doi: 10.1002/1522-2616(200105)225:1<39::AID-MANA39>3.0.CO;2-5. |
[37] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman, (1985).
|
[38] |
K. Gröger, A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations,, Math. Ann., 283 (1989), 679.
doi: 10.1007/BF01442860. |
[39] |
M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, J. Physica D, 92 (1996), 178.
doi: 10.1016/0167-2789(95)00173-5. |
[40] |
F. Hausdorff, Set Theory,, Translated from the German by John R. Aumann et al Chelsea Publishing Co., (1962).
|
[41] |
I. Ly and D. Seck, Isoperimetric inequality for an interior free boundary problem with $p$-Laplacian operator,, EJDE, 2004 (2004), 1.
|
[42] |
F. Maggi and C. Villani, Balls have the worst best Sobolev inequalities,, Journal of Geometric Analysis, 15 (2005), 83.
doi: 10.1007/BF02921860. |
[43] |
F. Maggi and C. Villani, Balls have the worst best Sobolev inequalities. Part II: Variants and extensions,, Calc. Var., 31 (2008), 47.
doi: 10.1007/s00526-007-0105-x. |
[44] |
V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, Springer, (2011).
doi: 10.1007/978-3-642-15564-2. |
[45] |
L. Payne and H. Weinberger, An optimal Poincaré inequality for convex domains,, Archive for Rational Mechanics and Analysis, 5 (1860), 286.
doi: 10.1007/BF00252910. |
[46] |
W. Pfeffer, Derivation and Integration,, Cambridge University Press, (2001).
doi: 10.1017/CBO9780511574764. |
[47] |
O. Pironneau, Optimal Shape Design for Elliptic Systems,, Springer-Verlag, (1984).
doi: 10.1007/978-3-642-87722-3. |
[48] |
J. Rehberg, A criterion for a two-dimensional domain to be Lipschitzian,, WIAS-Preprint, (1695). Google Scholar |
[49] |
R. Rockafellar and R.-B. Wets, Variational Analysis,, Springer, (1998).
doi: 10.1007/978-3-642-02431-3. |
[50] |
R. Rossi and M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity, WIAS-Preprint 1692,, E-First in ESAIM-COCV, (2014). Google Scholar |
[51] |
T. Roubíček, M. Thomas and C. Panagiotopoulos, Stress-driven local-solution approach to quasistatic brittle,, delamination, (1889). Google Scholar |
[52] |
G. Schimperna and U. Stefanelli, Positivity of the temperature for phase transitions with micro-movements,, Nonlinear Anal. Real World Appl., 8 (2007), 257.
doi: 10.1016/j.nonrwa.2005.08.004. |
[53] |
P.-M. Suquet, Existence et régularité des solutions des équations de la plasticité,, C. R. Acad. Sci. Paris Sér. A-B, 286 (1978).
|
[54] |
W. Ziemer, Weakly Differentiable Functions,, Springer, (1989).
doi: 10.1007/978-1-4612-1015-3. |
show all references
References:
[1] |
G. Acosta and R. Durán, An optimal Poincaré inequality in $L^1$ for convex domains,, Proceedings of the American Mathematical Society, 132 (2004), 195.
doi: 10.1090/S0002-9939-03-07004-7. |
[2] |
R. Adams, Sobolev Spaces,, Academic Press, (1975).
|
[3] |
R. Adams and J. Fournier, Cone conditions and properties of Sobolev spaces,, J. Math. Anal. Appl., 61 (1977), 713.
doi: 10.1016/0022-247X(77)90173-1. |
[4] |
R. Adams and J. Fournier, Sobolev Spaces,, 2nd edition, (2003).
|
[5] |
S. Agmon, Lectures on Elliptic Boundary Value Problems,, D. Van Nostrand Company, (1965).
|
[6] |
S. Bartels, A. Mielke and T. Roubíček, Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation,, SIAM J. Numer. Anal., 50 (2012), 951.
doi: 10.1137/100819205. |
[7] |
A. Boulkhemair and A. Chakib, On the uniform Poincaré inequality,, Commum. Part. Diff. Equat., 32 (2007), 1439.
doi: 10.1080/03605300600910241. |
[8] |
Y. Burago and V. Zalgaller, Geometric Inequalities,, Grundlehren der Mathematischen Wissenschaften, (1988).
doi: 10.1007/978-3-662-07441-1. |
[9] |
G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Ration. Mech. Anal., 92 (1986), 205.
doi: 10.1007/BF00254827. |
[10] |
D. Chenais, On the existence of a solution in a domain identification problem,, J. Math. Anal. Appl., 52 (1975), 189.
doi: 10.1016/0022-247X(75)90091-8. |
[11] |
D. Chenais, Sur une famille de variétés a bord lipschitziennes. application à un problème d' identification de domaines,, Annales de'l Institut Fourier, 27 (1977), 201.
doi: 10.5802/aif.676. |
[12] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, A temperature-dependent phase segregation problem of the Allen-Cahn type,, Adv. Math. Sci. Appl., 20 (2010), 219.
|
[13] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system,, SIAM J. Appl. Math., 71 (2011), 1849.
doi: 10.1137/110828526. |
[14] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Global existence for a strongly coupled Cahn-Hilliard system with viscosity,, Boll. Unione Mat. Ital., 5 (2012), 495.
|
[15] |
P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 353.
|
[16] |
G. Colombo and K. Nguyen, Quantitative isoperimetric inequalities for a class of nonconvex sets,, Calc. Var., 37 (2010), 141.
doi: 10.1007/s00526-009-0256-z. |
[17] |
G. Dal Maso, A. DeSimone and M. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials,, Arch. Ration. Mech. Anal., 180 (2006), 237.
doi: 10.1007/s00205-005-0407-0. |
[18] |
G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165.
doi: 10.1007/s00205-004-0351-4. |
[19] |
A. DeSimone and M. Kružík, Domain patterns and hysteresis in phase-transforming solids: analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation,, Networks and Heterogeneous Media, 8 (2013), 481.
doi: 10.3934/nhm.2013.8.481. |
[20] |
W. Dreyer and C. Guhlke, Sharp limit of the viscous Cahn-Hilliard equation and thermodynamic consistency,, WIAS-Preprint 1771., (1771). Google Scholar |
[21] |
L. Esposito, V. Ferone, B. Kawohl, C. Nitsch and C. Trombetti, The longest shortest fence and sharp Poincaré-Sobolev inequalities,, Arch. Ration. Mech. Anal., 206 (2012), 821.
doi: 10.1007/s00205-012-0545-0. |
[22] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).
|
[23] |
E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to some models of phase changes with microscopic movements,, Math. Meth. Appl. Sci., 32 (2009), 1345.
doi: 10.1002/mma.1089. |
[24] |
A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities,, Invent math., 182 (2010), 167.
doi: 10.1007/s00222-010-0261-z. |
[25] |
G. Francfort and J.-J. Marigo, Stable damage evolution in a brittle continuous medium,, Eur. J. Mech., 12 (1993), 149.
|
[26] |
S. Frigeri, M. Grasselli and Krejčí, Strong solutions for two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems,, J. Differential Equations, 255 (2013), 2587.
doi: 10.1016/j.jde.2013.07.016. |
[27] |
B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in $\mathbbR^n$,, Transactions of the American Mathematical Society, 314 (1989), 619.
doi: 10.2307/2001401. |
[28] |
N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative Sobolev inequality for functions of bounded variation,, Journal of Functional Analysis, 244 (2007), 315.
doi: 10.1016/j.jfa.2006.10.015. |
[29] |
N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality,, Annals of Mathematics, 168 (2008), 941.
doi: 10.4007/annals.2008.168.941. |
[30] |
H. Gajewski, An application of eigenfunctions of $p$-Laplacians to domain separation,, Mathematica Bohemica, 126 (2001), 395.
|
[31] |
H. Gajewski and K. Gärtner, Domain separation by means of sign changing eigenfunctions of $p$-Laplacians,, Appl. Anal., 79 (2001), 483.
doi: 10.1080/00036810108840974. |
[32] |
H. Gajewski and K. Gärtner, Domain separation by means of sign changing eigenfunctions of $p$-Laplacians, II,, Nonlinear Anal., 52 (2003), 291. Google Scholar |
[33] |
H. Garcke and C. Kraus, An inhomogeneous, anisotropic, elastically modified Gibbs-Thomson law as singular limit of a diffuse interface model,, AMSA, 20 (2010), 511.
|
[34] |
A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fracture,, Calc. Var. Partial Differential Equations, 22 (2005), 129.
doi: 10.1007/s00526-004-0269-6. |
[35] |
J. Griepentrog, K. Gröger, H.-K. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary value problems,, Mathematische Nachrichten, 241 (2002), 110.
doi: 10.1002/1522-2616(200207)241:1<110::AID-MANA110>3.0.CO;2-R. |
[36] |
J. Griepentrog and L. Recke, Linear elliptic boundary value problems with non-smooth data: Normal solvability on sobolev-campanato spaces,, Mathematische Nachrichten, 225 (2001), 39.
doi: 10.1002/1522-2616(200105)225:1<39::AID-MANA39>3.0.CO;2-5. |
[37] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman, (1985).
|
[38] |
K. Gröger, A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations,, Math. Ann., 283 (1989), 679.
doi: 10.1007/BF01442860. |
[39] |
M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, J. Physica D, 92 (1996), 178.
doi: 10.1016/0167-2789(95)00173-5. |
[40] |
F. Hausdorff, Set Theory,, Translated from the German by John R. Aumann et al Chelsea Publishing Co., (1962).
|
[41] |
I. Ly and D. Seck, Isoperimetric inequality for an interior free boundary problem with $p$-Laplacian operator,, EJDE, 2004 (2004), 1.
|
[42] |
F. Maggi and C. Villani, Balls have the worst best Sobolev inequalities,, Journal of Geometric Analysis, 15 (2005), 83.
doi: 10.1007/BF02921860. |
[43] |
F. Maggi and C. Villani, Balls have the worst best Sobolev inequalities. Part II: Variants and extensions,, Calc. Var., 31 (2008), 47.
doi: 10.1007/s00526-007-0105-x. |
[44] |
V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, Springer, (2011).
doi: 10.1007/978-3-642-15564-2. |
[45] |
L. Payne and H. Weinberger, An optimal Poincaré inequality for convex domains,, Archive for Rational Mechanics and Analysis, 5 (1860), 286.
doi: 10.1007/BF00252910. |
[46] |
W. Pfeffer, Derivation and Integration,, Cambridge University Press, (2001).
doi: 10.1017/CBO9780511574764. |
[47] |
O. Pironneau, Optimal Shape Design for Elliptic Systems,, Springer-Verlag, (1984).
doi: 10.1007/978-3-642-87722-3. |
[48] |
J. Rehberg, A criterion for a two-dimensional domain to be Lipschitzian,, WIAS-Preprint, (1695). Google Scholar |
[49] |
R. Rockafellar and R.-B. Wets, Variational Analysis,, Springer, (1998).
doi: 10.1007/978-3-642-02431-3. |
[50] |
R. Rossi and M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity, WIAS-Preprint 1692,, E-First in ESAIM-COCV, (2014). Google Scholar |
[51] |
T. Roubíček, M. Thomas and C. Panagiotopoulos, Stress-driven local-solution approach to quasistatic brittle,, delamination, (1889). Google Scholar |
[52] |
G. Schimperna and U. Stefanelli, Positivity of the temperature for phase transitions with micro-movements,, Nonlinear Anal. Real World Appl., 8 (2007), 257.
doi: 10.1016/j.nonrwa.2005.08.004. |
[53] |
P.-M. Suquet, Existence et régularité des solutions des équations de la plasticité,, C. R. Acad. Sci. Paris Sér. A-B, 286 (1978).
|
[54] |
W. Ziemer, Weakly Differentiable Functions,, Springer, (1989).
doi: 10.1007/978-1-4612-1015-3. |
[1] |
Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047 |
[2] |
YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1 |
[3] |
Igor E. Verbitsky. The Hessian Sobolev inequality and its extensions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6165-6179. doi: 10.3934/dcds.2015.35.6165 |
[4] |
Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951 |
[5] |
Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733 |
[6] |
Jianqing Chen. Best constant of 3D Anisotropic Sobolev inequality and its applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 655-666. doi: 10.3934/cpaa.2010.9.655 |
[7] |
Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935 |
[8] |
José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138 |
[9] |
George Avalos, Daniel Toundykov. A uniform discrete inf-sup inequality for finite element hydro-elastic models. Evolution Equations & Control Theory, 2016, 5 (4) : 515-531. doi: 10.3934/eect.2016017 |
[10] |
Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987 |
[11] |
Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171 |
[12] |
Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329 |
[13] |
Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119 |
[14] |
Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741 |
[15] |
S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279 |
[16] |
Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437 |
[17] |
Alexei Shadrin. The Landau--Kolmogorov inequality revisited. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1183-1210. doi: 10.3934/dcds.2014.34.1183 |
[18] |
Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2417-2427. doi: 10.3934/cpaa.2012.11.2417 |
[19] |
Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143 |
[20] |
James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]