June  2015, 35(6): 2763-2796. doi: 10.3934/dcds.2015.35.2763

Weak structural stability of pseudo-monotone equations

1. 

Università degli Studi di Trento, Dipartimento di Matematica, via Sommarive 14, 38050 Povo (Trento) - Italia

Received  January 2014 Revised  June 2014 Published  December 2014

The inclusion $\beta(u)\ni h$ in $V'$ is studied, assuming that $V$ is a reflexive Banach space, and that $\beta: V \to {\cal P}(V')$ is a generalized pseudo-monotone operator in the sense of Browder-Hess [MR 0365242]. A notion of strict generalized pseudo-monotonicity is also introduced. The above inclusion is here reformulated as a minimization problem for a (nonconvex) functional $V \!\times V'\to \mathbf{R} \cup \{+\infty\}$.
    A nonlinear topology of weak-type is introduced, and related compactness results are proved via De Giorgi's notion of $\Gamma$-convergence. The compactness and the convergence of the family of operators $\beta$ provide the (weak) structural stability of the inclusion $\beta(u)\ni h$ with respect to variations of $\beta$ and $h$, under the only assumptions that the $\beta$s are equi-coercive and the $h$s are equi-bounded.
    These results are then applied to the weak stability of the Cauchy problem for doubly-nonlinear parabolic inclusions of the form $D_t\partial\varphi(u) + \alpha(u) \ni h$, $\partial\varphi$ being the subdifferential of a convex lower semicontinuous mapping $\varphi$, and $\alpha$ a generalized pseudo-monotone operator. The technique of compactness by strict convexity is also used in the limit procedure.
Citation: Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763
References:
[1]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 183 (1983), 311. doi: 10.1007/BF01176474. Google Scholar

[2]

A. Ambrosetti and C. Sbordone, $\Gamma$-convergenza e G-convergenza per problemi non lineari di tipo ellittico,, Boll. Un. Mat. Ital. (5), 13 (1976), 352. Google Scholar

[3]

H. Attouch, Variational Convergence for Functions and Operators,, Pitman, (1984). Google Scholar

[4]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces,, Springer, (2010). doi: 10.1007/978-1-4419-5542-5. Google Scholar

[5]

G. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, North-Holland, (1978). Google Scholar

[6]

L. Boccardo and F. Murat, Remarques sur l'homogénéisation de certains problèmes quasi-linéaires,, Portugal. Math., 41 (1982), 535. Google Scholar

[7]

A. Braides, $\Gamma$-Convergence for Beginners,, Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001. Google Scholar

[8]

A. Braides and A. Defranceschi, Homogenization of Multiple Integrals,, Oxford University Press, (1998). Google Scholar

[9]

H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité,, Ann. Inst. Fourier (Grenoble), 18 (1968), 115. doi: 10.5802/aif.280. Google Scholar

[10]

H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland Publishing Co., (1973). Google Scholar

[11]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011). Google Scholar

[12]

F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces,, Amer. Math. Soc., (1976), 1. Google Scholar

[13]

F. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces,, J. Functional Analysis, 11 (1972), 251. doi: 10.1016/0022-1236(72)90070-5. Google Scholar

[14]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, Vol. 580. Springer-Verlag, (1977). Google Scholar

[15]

V. Chiadò Piat, G. Dal Maso and A. Defranceschi, G-convergence of monotone operators,, Ann. Inst. H. Poincaré, 7 (1990), 123. Google Scholar

[16]

D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford Univ. Press, (1999). Google Scholar

[17]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[18]

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842. Google Scholar

[19]

N. Dunford and J. Schwartz, Linear Operators, Vol. I., Interscience, (1958). Google Scholar

[20]

I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnelles,, Dunod Gauthier-Villars, (1974). Google Scholar

[21]

S. Fitzpatrick, Representing monotone operators by convex functions,, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 20 (1988), 59. Google Scholar

[22]

G. Francfort, F. Murat and L. Tartar, Homogenization of monotone operators in divergence form with x-dependent multivalued graphs,, Ann. Mat. Pura Appl. (4), 188 (2009), 631. doi: 10.1007/s10231-009-0094-9. Google Scholar

[23]

N. Fusco and G. Moscariello, On the homogenization of quasilinear divergence structure operators,, Ann. Mat. Pura Appl., 146 (1987), 1. doi: 10.1007/BF01762357. Google Scholar

[24]

N. Fusco and G. Moscariello, Further results on the homogenization of quasilinear operators,, Ricerche Mat., 35 (1986), 231. Google Scholar

[25]

P. Hartman and G. Stampacchia, On some non linear elliptic differential functional equations,, Acta Math., 115 (1966), 271. doi: 10.1007/BF02392210. Google Scholar

[26]

P. Hess, Variational inequalities for strongly nonlinear elliptic operators,, J. Math. Pures Appl., 52 (1973), 285. Google Scholar

[27]

Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I,, Kluwer, (1979). Google Scholar

[28]

A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems,, North-Holland, (1979). Google Scholar

[29]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals,, Springer, (1994). doi: 10.1007/978-3-642-84659-5. Google Scholar

[30]

N. Kenmochi, Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations,, Hiroshima Math. J., 4 (1974), 229. Google Scholar

[31]

Le and V. Khoi, A range and existence theorem for pseudomonotone perturbations of maximal monotone operators,, Proc. Amer. Math. Soc., 139 (2011), 1645. doi: 10.1090/S0002-9939-2010-10594-4. Google Scholar

[32]

J. Leray and J. L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder,, Bull. Soc. Math. France, 93 (1965), 97. Google Scholar

[33]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,, Dunod, (1969). Google Scholar

[34]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,, Vol. I. Springer, (1972). Google Scholar

[35]

P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems,, Ann. Mat. Pura Appl., 117 (1978), 139. doi: 10.1007/BF02417888. Google Scholar

[36]

G. J. Minty, Monotone (nonlinear) operators in Hilbert space,, Duke Math. J., 29 (1962), 341. doi: 10.1215/S0012-7094-62-02933-2. Google Scholar

[37]

A. Pankov, G-Convergence and Homogenization of Nonlinear Partial Differential Equations,, Kluwer, (1997). Google Scholar

[38]

U.E. Raĭtum, On G-convergence of quasilinear elliptic operators with unbounded coefficients, (Russian), Dokl. Akad. Nauk SSSR, 261 (1981), 30. Google Scholar

[39]

T. Roche, R. Rossi and U. Stefanelli, Stability results for doubly nonlinear differential inclusions by variational convergence,, SIAM J. Control Optim., 52 (2014), 1071. doi: 10.1137/130909391. Google Scholar

[40]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[41]

S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 571. Google Scholar

[42]

L. Tartar, Course Peccot,, Collège de France, (1997), 21. Google Scholar

[43]

L. Tartar, The General Theory of Homogenization. A Personalized Introduction,, Springer, (2009). doi: 10.1007/978-3-642-05195-1. Google Scholar

[44]

R. Temam, Navier-Stokes equations. Theory and numerical analysis,, North-Holland, (1979). Google Scholar

[45]

A. Visintin, Strong convergence results related to strict convexity,, Communications in P.D.E.s, 9 (1984), 439. doi: 10.1080/03605308408820337. Google Scholar

[46]

A. Visintin, Models of Phase Transitions,, Birkhäuser, (1996). doi: 10.1007/978-1-4612-4078-5. Google Scholar

[47]

A. Visintin, Variational formulation and structural stability of monotone equations,, Calc. Var. Partial Differential Equations, 47 (2013), 273. doi: 10.1007/s00526-012-0519-y. Google Scholar

[48]

A. Visintin, Scale-transformations and homogenization of maximal monotone relations, with applications,, Asymptotic Analysis, 82 (2013), 233. Google Scholar

[49]

A. Visintin, An extension of the Fitzpatrick theory,, Commun. Pure Appl. Anal., 13 (2014), 2039. doi: 10.3934/cpaa.2014.13.2039. Google Scholar

[50]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/B: Nonlinear Monotone Operators,, Springer, (1990). doi: 10.1007/978-1-4612-0985-0. Google Scholar

show all references

References:
[1]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 183 (1983), 311. doi: 10.1007/BF01176474. Google Scholar

[2]

A. Ambrosetti and C. Sbordone, $\Gamma$-convergenza e G-convergenza per problemi non lineari di tipo ellittico,, Boll. Un. Mat. Ital. (5), 13 (1976), 352. Google Scholar

[3]

H. Attouch, Variational Convergence for Functions and Operators,, Pitman, (1984). Google Scholar

[4]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces,, Springer, (2010). doi: 10.1007/978-1-4419-5542-5. Google Scholar

[5]

G. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures,, North-Holland, (1978). Google Scholar

[6]

L. Boccardo and F. Murat, Remarques sur l'homogénéisation de certains problèmes quasi-linéaires,, Portugal. Math., 41 (1982), 535. Google Scholar

[7]

A. Braides, $\Gamma$-Convergence for Beginners,, Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001. Google Scholar

[8]

A. Braides and A. Defranceschi, Homogenization of Multiple Integrals,, Oxford University Press, (1998). Google Scholar

[9]

H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité,, Ann. Inst. Fourier (Grenoble), 18 (1968), 115. doi: 10.5802/aif.280. Google Scholar

[10]

H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland Publishing Co., (1973). Google Scholar

[11]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011). Google Scholar

[12]

F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces,, Amer. Math. Soc., (1976), 1. Google Scholar

[13]

F. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces,, J. Functional Analysis, 11 (1972), 251. doi: 10.1016/0022-1236(72)90070-5. Google Scholar

[14]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, Vol. 580. Springer-Verlag, (1977). Google Scholar

[15]

V. Chiadò Piat, G. Dal Maso and A. Defranceschi, G-convergence of monotone operators,, Ann. Inst. H. Poincaré, 7 (1990), 123. Google Scholar

[16]

D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford Univ. Press, (1999). Google Scholar

[17]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[18]

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842. Google Scholar

[19]

N. Dunford and J. Schwartz, Linear Operators, Vol. I., Interscience, (1958). Google Scholar

[20]

I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnelles,, Dunod Gauthier-Villars, (1974). Google Scholar

[21]

S. Fitzpatrick, Representing monotone operators by convex functions,, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 20 (1988), 59. Google Scholar

[22]

G. Francfort, F. Murat and L. Tartar, Homogenization of monotone operators in divergence form with x-dependent multivalued graphs,, Ann. Mat. Pura Appl. (4), 188 (2009), 631. doi: 10.1007/s10231-009-0094-9. Google Scholar

[23]

N. Fusco and G. Moscariello, On the homogenization of quasilinear divergence structure operators,, Ann. Mat. Pura Appl., 146 (1987), 1. doi: 10.1007/BF01762357. Google Scholar

[24]

N. Fusco and G. Moscariello, Further results on the homogenization of quasilinear operators,, Ricerche Mat., 35 (1986), 231. Google Scholar

[25]

P. Hartman and G. Stampacchia, On some non linear elliptic differential functional equations,, Acta Math., 115 (1966), 271. doi: 10.1007/BF02392210. Google Scholar

[26]

P. Hess, Variational inequalities for strongly nonlinear elliptic operators,, J. Math. Pures Appl., 52 (1973), 285. Google Scholar

[27]

Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I,, Kluwer, (1979). Google Scholar

[28]

A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems,, North-Holland, (1979). Google Scholar

[29]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals,, Springer, (1994). doi: 10.1007/978-3-642-84659-5. Google Scholar

[30]

N. Kenmochi, Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations,, Hiroshima Math. J., 4 (1974), 229. Google Scholar

[31]

Le and V. Khoi, A range and existence theorem for pseudomonotone perturbations of maximal monotone operators,, Proc. Amer. Math. Soc., 139 (2011), 1645. doi: 10.1090/S0002-9939-2010-10594-4. Google Scholar

[32]

J. Leray and J. L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder,, Bull. Soc. Math. France, 93 (1965), 97. Google Scholar

[33]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,, Dunod, (1969). Google Scholar

[34]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,, Vol. I. Springer, (1972). Google Scholar

[35]

P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems,, Ann. Mat. Pura Appl., 117 (1978), 139. doi: 10.1007/BF02417888. Google Scholar

[36]

G. J. Minty, Monotone (nonlinear) operators in Hilbert space,, Duke Math. J., 29 (1962), 341. doi: 10.1215/S0012-7094-62-02933-2. Google Scholar

[37]

A. Pankov, G-Convergence and Homogenization of Nonlinear Partial Differential Equations,, Kluwer, (1997). Google Scholar

[38]

U.E. Raĭtum, On G-convergence of quasilinear elliptic operators with unbounded coefficients, (Russian), Dokl. Akad. Nauk SSSR, 261 (1981), 30. Google Scholar

[39]

T. Roche, R. Rossi and U. Stefanelli, Stability results for doubly nonlinear differential inclusions by variational convergence,, SIAM J. Control Optim., 52 (2014), 1071. doi: 10.1137/130909391. Google Scholar

[40]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[41]

S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 571. Google Scholar

[42]

L. Tartar, Course Peccot,, Collège de France, (1997), 21. Google Scholar

[43]

L. Tartar, The General Theory of Homogenization. A Personalized Introduction,, Springer, (2009). doi: 10.1007/978-3-642-05195-1. Google Scholar

[44]

R. Temam, Navier-Stokes equations. Theory and numerical analysis,, North-Holland, (1979). Google Scholar

[45]

A. Visintin, Strong convergence results related to strict convexity,, Communications in P.D.E.s, 9 (1984), 439. doi: 10.1080/03605308408820337. Google Scholar

[46]

A. Visintin, Models of Phase Transitions,, Birkhäuser, (1996). doi: 10.1007/978-1-4612-4078-5. Google Scholar

[47]

A. Visintin, Variational formulation and structural stability of monotone equations,, Calc. Var. Partial Differential Equations, 47 (2013), 273. doi: 10.1007/s00526-012-0519-y. Google Scholar

[48]

A. Visintin, Scale-transformations and homogenization of maximal monotone relations, with applications,, Asymptotic Analysis, 82 (2013), 233. Google Scholar

[49]

A. Visintin, An extension of the Fitzpatrick theory,, Commun. Pure Appl. Anal., 13 (2014), 2039. doi: 10.3934/cpaa.2014.13.2039. Google Scholar

[50]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/B: Nonlinear Monotone Operators,, Springer, (1990). doi: 10.1007/978-1-4612-0985-0. Google Scholar

[1]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[2]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[3]

A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial & Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233

[4]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[5]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[6]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[7]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[8]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[9]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[10]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[11]

Ryuichi Suzuki. Universal bounds for quasilinear parabolic equations with convection. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 563-586. doi: 10.3934/dcds.2006.16.563

[12]

Gary Lieberman. Nonlocal problems for quasilinear parabolic equations in divergence form. Conference Publications, 2003, 2003 (Special) : 563-570. doi: 10.3934/proc.2003.2003.563

[13]

Eduardo Casas, Konstantinos Chrysafinos. Analysis and optimal control of some quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 607-623. doi: 10.3934/mcrf.2018025

[14]

Jeremy LeCrone, Gieri Simonett. On quasilinear parabolic equations and continuous maximal regularity. Evolution Equations & Control Theory, 2020, 9 (1) : 61-86. doi: 10.3934/eect.2020017

[15]

Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010

[16]

Wei Wang, Na Sun, Michael K. Ng. A variational gamma correction model for image contrast enhancement. Inverse Problems & Imaging, 2019, 13 (3) : 461-478. doi: 10.3934/ipi.2019023

[17]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[18]

M. Matzeu, Raffaella Servadei. A variational approach to a class of quasilinear elliptic equations not in divergence form. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 819-830. doi: 10.3934/dcdss.2012.5.819

[19]

Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612

[20]

Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks & Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]