July  2015, 35(7): 2797-2815. doi: 10.3934/dcds.2015.35.2797

On the asymptotics of the scenery flow

1. 

Centre for Mathematical Sciences, Lund University, Box 118, 22 100 Lund, Sweden, Sweden, Sweden

2. 

Centre for Mathematical Sciences, Lund University, P.O. Box 118, SE-221 00 Lund

Received  June 2014 Revised  December 2014 Published  January 2015

We study the asymptotics of the scenery flow. We give corrected versions with proofs of a certain lemma by Hochman, and study some related phenomena.
Citation: Magnus Aspenberg, Fredrik Ekström, Tomas Persson, Jörg Schmeling. On the asymptotics of the scenery flow. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2797-2815. doi: 10.3934/dcds.2015.35.2797
References:
[1]

C. Bandt, The Tangent Distribution for Self-Similar Measures,, Lecture at the 5th Conference on Real Analysis and Measure Theory, (1992).   Google Scholar

[2]

K. Falconer, Techniques in Fractal Geometry,, John Wiley & sons, (1997).   Google Scholar

[3]

M. Gavish, Measures with uniform scaling scenery,, Ergod. Th. & Dynam. Sys., 31 (2011), 33.  doi: 10.1017/S0143385709000996.  Google Scholar

[4]

S. Graf, On Bandt's tangential distribution for self-similar measures,, Monatsh. Math., 120 (1995), 223.  doi: 10.1007/BF01294859.  Google Scholar

[5]

M. Hochman, Geometric rigidity of $\times m$ invariant measures,, J. Eur. Math. Soc., 14 (2012), 1539.  doi: 10.4171/JEMS/340.  Google Scholar

[6]

M. Hochman, Dynamics on fractals and fractal distributions,, preprint, (2013).   Google Scholar

[7]

M. Hochman, Erratum to "Geometric rigidity of $\times m$ invariant measures'',, J. Eur. Math. Soc., 15 (2013), 2463.  doi: 10.4171/JEMS/425.  Google Scholar

[8]

D. W. Stroock, Probability Theory, an Analytic View,, Cambridge University Press, (1993).   Google Scholar

show all references

References:
[1]

C. Bandt, The Tangent Distribution for Self-Similar Measures,, Lecture at the 5th Conference on Real Analysis and Measure Theory, (1992).   Google Scholar

[2]

K. Falconer, Techniques in Fractal Geometry,, John Wiley & sons, (1997).   Google Scholar

[3]

M. Gavish, Measures with uniform scaling scenery,, Ergod. Th. & Dynam. Sys., 31 (2011), 33.  doi: 10.1017/S0143385709000996.  Google Scholar

[4]

S. Graf, On Bandt's tangential distribution for self-similar measures,, Monatsh. Math., 120 (1995), 223.  doi: 10.1007/BF01294859.  Google Scholar

[5]

M. Hochman, Geometric rigidity of $\times m$ invariant measures,, J. Eur. Math. Soc., 14 (2012), 1539.  doi: 10.4171/JEMS/340.  Google Scholar

[6]

M. Hochman, Dynamics on fractals and fractal distributions,, preprint, (2013).   Google Scholar

[7]

M. Hochman, Erratum to "Geometric rigidity of $\times m$ invariant measures'',, J. Eur. Math. Soc., 15 (2013), 2463.  doi: 10.4171/JEMS/425.  Google Scholar

[8]

D. W. Stroock, Probability Theory, an Analytic View,, Cambridge University Press, (1993).   Google Scholar

[1]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[2]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[3]

V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117

[4]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[5]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[6]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[7]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[8]

Michael Barnsley, James Keesling, Mrinal Kanti Roychowdhury. Special issue on fractal geometry, dynamical systems, and their applications. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : ⅰ-ⅰ. doi: 10.3934/dcdss.201908i

[9]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

[10]

Joseph Squillace. Estimating the fractal dimension of sets determined by nonergodic parameters. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5843-5859. doi: 10.3934/dcds.2017254

[11]

Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591

[12]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[13]

Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503

[14]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[15]

Yuanhong Chen, Chao Ma, Jun Wu. Moving recurrent properties for the doubling map on the unit interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2969-2979. doi: 10.3934/dcds.2016.36.2969

[16]

Jian Zhai, Jianping Fang, Lanjun Li. Wave map with potential and hypersurface flow. Conference Publications, 2005, 2005 (Special) : 940-946. doi: 10.3934/proc.2005.2005.940

[17]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure & Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

[18]

Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098

[19]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[20]

Vanderlei Horita, Marcelo Viana. Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1125-1152. doi: 10.3934/dcds.2005.13.1125

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

[Back to Top]