Citation: |
[1] |
C. Bandt, The Tangent Distribution for Self-Similar Measures, Lecture at the 5th Conference on Real Analysis and Measure Theory, 1992. |
[2] |
K. Falconer, Techniques in Fractal Geometry, John Wiley & sons, Chichester, 1997. |
[3] |
M. Gavish, Measures with uniform scaling scenery, Ergod. Th. & Dynam. Sys., 31 (2011), 33-48.doi: 10.1017/S0143385709000996. |
[4] |
S. Graf, On Bandt's tangential distribution for self-similar measures, Monatsh. Math., 120 (1995), 223-246.doi: 10.1007/BF01294859. |
[5] |
M. Hochman, Geometric rigidity of $\times m$ invariant measures, J. Eur. Math. Soc., 14 (2012), 1539-1563.doi: 10.4171/JEMS/340. |
[6] |
M. Hochman, Dynamics on fractals and fractal distributions, preprint, arXiv:1008.3731, 2013. |
[7] |
M. Hochman, Erratum to "Geometric rigidity of $\times m$ invariant measures'', J. Eur. Math. Soc., 15 (2013), 2463-2464.doi: 10.4171/JEMS/425. |
[8] |
D. W. Stroock, Probability Theory, an Analytic View, Cambridge University Press, Cambridge, 1993. |