July  2015, 35(7): 2797-2815. doi: 10.3934/dcds.2015.35.2797

On the asymptotics of the scenery flow

1. 

Centre for Mathematical Sciences, Lund University, Box 118, 22 100 Lund, Sweden, Sweden, Sweden

2. 

Centre for Mathematical Sciences, Lund University, P.O. Box 118, SE-221 00 Lund

Received  June 2014 Revised  December 2014 Published  January 2015

We study the asymptotics of the scenery flow. We give corrected versions with proofs of a certain lemma by Hochman, and study some related phenomena.
Citation: Magnus Aspenberg, Fredrik Ekström, Tomas Persson, Jörg Schmeling. On the asymptotics of the scenery flow. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2797-2815. doi: 10.3934/dcds.2015.35.2797
References:
[1]

C. Bandt, The Tangent Distribution for Self-Similar Measures,, Lecture at the 5th Conference on Real Analysis and Measure Theory, (1992).   Google Scholar

[2]

K. Falconer, Techniques in Fractal Geometry,, John Wiley & sons, (1997).   Google Scholar

[3]

M. Gavish, Measures with uniform scaling scenery,, Ergod. Th. & Dynam. Sys., 31 (2011), 33.  doi: 10.1017/S0143385709000996.  Google Scholar

[4]

S. Graf, On Bandt's tangential distribution for self-similar measures,, Monatsh. Math., 120 (1995), 223.  doi: 10.1007/BF01294859.  Google Scholar

[5]

M. Hochman, Geometric rigidity of $\times m$ invariant measures,, J. Eur. Math. Soc., 14 (2012), 1539.  doi: 10.4171/JEMS/340.  Google Scholar

[6]

M. Hochman, Dynamics on fractals and fractal distributions,, preprint, (2013).   Google Scholar

[7]

M. Hochman, Erratum to "Geometric rigidity of $\times m$ invariant measures'',, J. Eur. Math. Soc., 15 (2013), 2463.  doi: 10.4171/JEMS/425.  Google Scholar

[8]

D. W. Stroock, Probability Theory, an Analytic View,, Cambridge University Press, (1993).   Google Scholar

show all references

References:
[1]

C. Bandt, The Tangent Distribution for Self-Similar Measures,, Lecture at the 5th Conference on Real Analysis and Measure Theory, (1992).   Google Scholar

[2]

K. Falconer, Techniques in Fractal Geometry,, John Wiley & sons, (1997).   Google Scholar

[3]

M. Gavish, Measures with uniform scaling scenery,, Ergod. Th. & Dynam. Sys., 31 (2011), 33.  doi: 10.1017/S0143385709000996.  Google Scholar

[4]

S. Graf, On Bandt's tangential distribution for self-similar measures,, Monatsh. Math., 120 (1995), 223.  doi: 10.1007/BF01294859.  Google Scholar

[5]

M. Hochman, Geometric rigidity of $\times m$ invariant measures,, J. Eur. Math. Soc., 14 (2012), 1539.  doi: 10.4171/JEMS/340.  Google Scholar

[6]

M. Hochman, Dynamics on fractals and fractal distributions,, preprint, (2013).   Google Scholar

[7]

M. Hochman, Erratum to "Geometric rigidity of $\times m$ invariant measures'',, J. Eur. Math. Soc., 15 (2013), 2463.  doi: 10.4171/JEMS/425.  Google Scholar

[8]

D. W. Stroock, Probability Theory, an Analytic View,, Cambridge University Press, (1993).   Google Scholar

[1]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[8]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[9]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[10]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[11]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

[Back to Top]