    January  2015, 35(1): 283-299. doi: 10.3934/dcds.2015.35.283

## Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior

 1 University of Basel, Department of Mathematics and Computer Science, Rheinsprung 21, 4051 Basel, Switzerland, Switzerland

Received  January 2014 Revised  May 2014 Published  August 2014

We study the solutions $u\in C^\infty(\mathbb{R}^{2m})$ of the problem \begin{equation}\label{P0} (-\Delta)^mu=\bar Qe^{2mu}, \text{ where }\bar Q=\pm (2m-1)!, \quad V :=\int_{\mathbb{R}^{2m}}e^{2mu}dx <\infty,(1) \end{equation} particularly when $m>1$. Problem (1) corresponds to finding conformal metrics $g_u:=e^{2u}|dx|^2$ on $\mathbb{R}^{2m}$ with constant $Q$-curvature $\bar Q$ and finite volume $V$. Extending previous works of Chang-Chen, and Wei-Ye, we show that both the value $V$ and the asymptotic behavior of $u(x)$ as $|x|\to \infty$ can be simultaneously prescribed, under certain restrictions. When $\bar Q= (2m-1)!$ we need to assume $V < vol(S^{2m})$, but surprisingly for $\bar Q=-(2m-1)!$ the volume $V$ can be chosen arbitrarily.
Citation: Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283
##### References:
  H. Brézis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations, 16 (1991), 1223.  doi: 10.1080/03605309108820797.  Google Scholar  Sun-Yung A. Chang and W. Chen, A note on a class of higher order conformally covariant equations,, Discrete Contin. Dynam. Systems, 7 (2001), 275.  doi: 10.3934/dcds.2001.7.275.  Google Scholar  Sun-Yung A. Chang and P. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry,, Math. Res. Lett., 4 (1997), 91.  doi: 10.4310/MRL.1997.v4.n1.a9.  Google Scholar  W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar  D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition, (1998). Google Scholar  E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several variables,, Russ. Math. Surv., 16 (1961), 91. Google Scholar  C. R. Graham, R. Jenne, L. Mason and G. Sparling, Conformally invariant powers of the Laplacian. I. existence,, J. London Math. Soc., 46 (1992), 557.  doi: 10.1112/jlms/s2-46.3.557.  Google Scholar  T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three,, to appear in Calc. Var. Partial Differential Equations, (2014).  doi: 10.1007/s00526-014-0718-9. Google Scholar  C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^n$,, Comment. Math. Helv., 73 (1998), 206.  doi: 10.1007/s000140050052.  Google Scholar  R. C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,, Comm. Pure Appl. Math., 32 (1979), 783.  doi: 10.1002/cpa.3160320604.  Google Scholar  L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant $Q$-curvature,, Rend. Lincei. Mat. Appl., 19 (2008), 279.  doi: 10.4171/RLM/525.  Google Scholar  L. Martinazzi, Classification of solutions to the higher order Liouville's equation on $\mathbbR^{2m}$,, Math. Z., 263 (2009), 307.  doi: 10.1007/s00209-008-0419-1.  Google Scholar  L. Martinazzi, Quantization for the prescribed Q-curvature equation on open domains,, Commun. Contemp. Math., 13 (2011), 533.  doi: 10.1142/S0219199711004373.  Google Scholar  L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant Q-curvature and large volume,, Ann. Inst. Henri Poincaré (C), 30 (2013), 969.  doi: 10.1016/j.anihpc.2012.12.007.  Google Scholar  L. Martinazzi and M. Petrache, Asymptotics and quantization for a mean-field equation of higher order,, Comm. Partial Differential Equations, 35 (2010), 443.  doi: 10.1080/03605300903296330.  Google Scholar  F. Robert, Quantization effects for a fourth order equation of exponential growth in dimension four,, Proc. Roy. Soc. Edinburgh Sec. A, 137 (2007), 531.  doi: 10.1017/S0308210506000096.  Google Scholar  J. Wei and D. Ye, Nonradial solutions for a conformally invariant fourth order equation in $\mathbbR^4$,, Calc. Var. Partial Differential Equations, 32 (2008), 373.  doi: 10.1007/s00526-007-0145-2.  Google Scholar

show all references

##### References:
  H. Brézis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations, 16 (1991), 1223.  doi: 10.1080/03605309108820797.  Google Scholar  Sun-Yung A. Chang and W. Chen, A note on a class of higher order conformally covariant equations,, Discrete Contin. Dynam. Systems, 7 (2001), 275.  doi: 10.3934/dcds.2001.7.275.  Google Scholar  Sun-Yung A. Chang and P. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry,, Math. Res. Lett., 4 (1997), 91.  doi: 10.4310/MRL.1997.v4.n1.a9.  Google Scholar  W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar  D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition, (1998). Google Scholar  E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several variables,, Russ. Math. Surv., 16 (1961), 91. Google Scholar  C. R. Graham, R. Jenne, L. Mason and G. Sparling, Conformally invariant powers of the Laplacian. I. existence,, J. London Math. Soc., 46 (1992), 557.  doi: 10.1112/jlms/s2-46.3.557.  Google Scholar  T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three,, to appear in Calc. Var. Partial Differential Equations, (2014).  doi: 10.1007/s00526-014-0718-9. Google Scholar  C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^n$,, Comment. Math. Helv., 73 (1998), 206.  doi: 10.1007/s000140050052.  Google Scholar  R. C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,, Comm. Pure Appl. Math., 32 (1979), 783.  doi: 10.1002/cpa.3160320604.  Google Scholar  L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant $Q$-curvature,, Rend. Lincei. Mat. Appl., 19 (2008), 279.  doi: 10.4171/RLM/525.  Google Scholar  L. Martinazzi, Classification of solutions to the higher order Liouville's equation on $\mathbbR^{2m}$,, Math. Z., 263 (2009), 307.  doi: 10.1007/s00209-008-0419-1.  Google Scholar  L. Martinazzi, Quantization for the prescribed Q-curvature equation on open domains,, Commun. Contemp. Math., 13 (2011), 533.  doi: 10.1142/S0219199711004373.  Google Scholar  L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant Q-curvature and large volume,, Ann. Inst. Henri Poincaré (C), 30 (2013), 969.  doi: 10.1016/j.anihpc.2012.12.007.  Google Scholar  L. Martinazzi and M. Petrache, Asymptotics and quantization for a mean-field equation of higher order,, Comm. Partial Differential Equations, 35 (2010), 443.  doi: 10.1080/03605300903296330.  Google Scholar  F. Robert, Quantization effects for a fourth order equation of exponential growth in dimension four,, Proc. Roy. Soc. Edinburgh Sec. A, 137 (2007), 531.  doi: 10.1017/S0308210506000096.  Google Scholar  J. Wei and D. Ye, Nonradial solutions for a conformally invariant fourth order equation in $\mathbbR^4$,, Calc. Var. Partial Differential Equations, 32 (2008), 373.  doi: 10.1007/s00526-007-0145-2.  Google Scholar
  Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43  Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151  Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239  Yaiza Canzani, Dmitry Jakobson, Igor Wigman. Scalar curvature and $Q$-curvature of random metrics. Electronic Research Announcements, 2010, 17: 43-56. doi: 10.3934/era.2010.17.43  Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363  Junping Shi, R. Shivaji. Semilinear elliptic equations with generalized cubic nonlinearities. Conference Publications, 2005, 2005 (Special) : 798-805. doi: 10.3934/proc.2005.2005.798  Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601  Hwai-Chiuan Wang. On domains and their indexes with applications to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 447-467. doi: 10.3934/dcds.2007.19.447  Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193  Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801  Antonio Greco, Marcello Lucia. Gamma-star-shapedness for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 93-99. doi: 10.3934/cpaa.2005.4.93  Marco Degiovanni, Michele Scaglia. A variational approach to semilinear elliptic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1233-1248. doi: 10.3934/dcds.2011.31.1233  Jiabao Su, Zhaoli Liu. A bounded resonance problem for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 431-445. doi: 10.3934/dcds.2007.19.431  Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085  Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886  David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335  Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139  Ali Maalaoui. Prescribing the Q-curvature on the sphere with conical singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6307-6330. doi: 10.3934/dcds.2016074  Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039  Zhuoran Du. Some properties of positive radial solutions for some semilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 943-953. doi: 10.3934/cpaa.2010.9.943

2018 Impact Factor: 1.143