\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Morse decomposition of global attractors with infinite components

Abstract Related Papers Cited by
  • In this paper we describe some dynamical properties of a Morse decomposition with a countable number of sets. In particular, we are able to prove that the gradient dynamics on Morse sets together with a separation assumption is equivalent to the existence of an ordered Lyapunov function associated to the Morse sets and also to the existence of a Morse decomposition -that is, the global attractor can be described as an increasing family of local attractors and their associated repellers.
    Mathematics Subject Classification: 37B25, 37L99, 35B40, 35B41.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Stability of gradient semigroups under perturbation, Nonlinearity, 24 (2011), 2099-2117.doi: 10.1088/0951-7715/24/7/010.

    [2]

    E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Continuity of Lyapunov functions and of energy level for a generalized gradient system, Topological Methods Nonl. Anal., 39 (2012), 57-82.

    [3]

    J. M. Arrieta, A. Rodríguez-Bernal and J. Valero, Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 2695-2984.doi: 10.1142/S0218127406016586.

    [4]

    A. V. Babin and M. I. Vishik, Attractors in Evolutionary Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.

    [5]

    A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation, J. Differential Equations, 246 (2009), 2646-2668.doi: 10.1016/j.jde.2009.01.007.

    [6]

    A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Series, 182, Springer, New York, 2013.doi: 10.1007/978-1-4614-4581-4.

    [7]

    A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570-603.doi: 10.1016/j.jde.2007.01.017.

    [8]

    C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38, American Mathematical Society, Providence, R.I., 1978.

    [9]

    J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs Number, 25, American Mathematical Society, Providence, RI, 1988.

    [10]

    D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin, 1981.

    [11]

    M. Hurley, Chain recurrence, semiflows and gradients, J. Dyn. Diff. Equations, 7 (1995), 437-456.doi: 10.1007/BF02219371.

    [12]

    O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.doi: 10.1017/CBO9780511569418.

    [13]

    D. E. Norton, The fundamental theorem of dynamical systems, Comment. Math., Univ. Carolinae, 36 (1995), 585-597.

    [14]

    M. Patrao, Morse decomposition of semiflows on topological spaces, J. Dyn. Diff. Equations, 19 (2007), 181-198.doi: 10.1007/s10884-006-9033-2.

    [15]

    M. Patrao and Luiz A.B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups, J. Dyn. Diff. Equations, 19 (2007), 155-180.doi: 10.1007/s10884-006-9032-3.

    [16]

    J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, England, 2001.doi: 10.1007/978-94-010-0732-0.

    [17]

    K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, 1987.doi: 10.1007/978-3-642-72833-4.

    [18]

    G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.doi: 10.1007/978-1-4757-5037-9.

    [19]

    R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4684-0313-8.

    [20]

    M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations, Cambridge University Press, Cambridge, England, 1992.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(114) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return