Citation: |
[1] |
N. Burq, P. Gerard and N. Tzvetkov, An instability property of the nonlinear Schrödinger equation on $S^d$, Math. Res. Lett, 9 (2002), 323-335.doi: 10.4310/MRL.2002.v9.n3.a8. |
[2] |
W. Chen and Z. Guo, Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation, J. Anal. Math., 114 (2011), 121-156.doi: 10.1007/s11854-011-0014-y. |
[3] |
M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math, 125 (2003), 1235-1293.doi: 10.1353/ajm.2003.0040. |
[4] |
_______, Instability of the periodic nonlinear Schrödinger equation, preprint, arXiv:math/0311227. |
[5] |
Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity, Funkcialaj Ekvacioj, 56 (2013), 193-224.doi: 10.1619/fesi.56.193. |
[6] |
_______, On the orbital stability of fractional Schrödinger equations, Comm. Pure Appl. Anal, 13 (2014), 1267-1282.doi: 10.3934/cpaa.2014.13.1267. |
[7] |
Y. Cho, G. Hwang, S. Kwon and S. Lee, Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations, Nolinear Analysis, 86 (2013), 12-29.doi: 10.1016/j.na.2013.03.002. |
[8] |
_______, Profile decompositions of fractional Schrodinger equations with angularly regular data, J. Differential Equations, 256 (2014), 3011-3037.doi: 10.1016/j.jde.2014.01.030. |
[9] |
Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.doi: 10.1512/iumj.2013.62.4970. |
[10] |
Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.doi: 10.3934/cpaa.2011.10.1121. |
[11] |
S. Demirbas, M. B. Erdoǧan and N. Tzirakis, Existence and uniqueness theory for the fractional Schrödinger equation on the torus, preprint, arXiv:1312.5249. |
[12] |
B. Guo and Z. Huo, Global Well-Posedness for the Fractional Nonlinear Schrödinger Equation, Comm. Partial Differential Equations, 36 (2011), 247-255.doi: 10.1080/03605302.2010.503769. |
[13] |
A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Func. Anal., 266 (2014), 139-176.doi: 10.1016/j.jfa.2013.08.027. |
[14] |
S. Kwon, Well-posedness and ill-posedness of the fifth-order modified KdV equations, Elec. J. Diff. Eqns, (2008), 1-15. |
[15] |
N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.doi: 10.1016/S0375-9601(00)00201-2. |
[16] |
L. Molinet, On ill-posedness for the one-dimensional periodic cubic Schrödinger equation, Math. Res. Lett, 16 (2009), 111-120.doi: 10.4310/MRL.2009.v16.n1.a11. |
[17] |
T. Tao, Multilinear weighted convolution of $L^2$ functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.doi: 10.1353/ajm.2001.0035. |