Citation: |
[1] |
J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.doi: 10.1007/s00332-002-0466-4. |
[2] |
________, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory, Nonlinearity, 17 (2004), 925-952.doi: 10.1088/0951-7715/17/3/010. |
[3] |
J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete Contin. Dyn. Syst., 23 (2009), 1241-1252.doi: 10.3934/dcds.2009.23.1241. |
[4] |
J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994), 1-26.doi: 10.1007/BF02099299. |
[5] |
R. Brout and I. Prigogine, Statistical mechanics of irreversible processes part viii: general theory of weakly coupled systems, Physica, 22 (1956), 621-636.doi: 10.1016/S0031-8914(56)90009-X. |
[6] |
N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., 173 (2008), 449-475.doi: 10.1007/s00222-008-0124-z. |
[7] |
F. Cacciafesta and A.-S. de Suzzoni, Continuity of the flow of KdV with regard to the Wasserstein metrics and application to an invariant measure, ArXiv e-prints, 2013. |
[8] |
A.-S. de Suzzoni, Wave Turbulence for the BBM Equation: Stability of a Gaussian Statistics Under the Flow of BBM, Comm. Math. Phys., 326 (2014), 773-813.doi: 10.1007/s00220-014-1897-0. |
[9] |
J. L. Lebowitz, H. A. Rose and E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys., 50 (1988), 657-687.doi: 10.1007/BF01026495. |
[10] |
R. Peierls, Zur kinetischen theorie der wärmeleitung in kristallen, Annalen der Physik, 395 (1929), 1055-1101.doi: 10.1002/andp.19293950803. |
[11] |
V. E. Zakharov and N. N. Filonenko, Weak turbulence of capillary waves, Journal of Applied Mechanics and Technical Physics, 8 (1967), 37-40.doi: 10.1007/BF00915178. |
[12] |
P. E. Zhidkov, On invariant measures for some infinite-dimensional dynamical systems, Ann. Inst. H. Poincaré Phys. Théor., 62 (1995), 267-287. |