• Previous Article
    Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity
  • DCDS Home
  • This Issue
  • Next Article
    Exponential attractors for abstract equations with memory and applications to viscoelasticity
July  2015, 35(7): 2905-2920. doi: 10.3934/dcds.2015.35.2905

Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures

1. 

Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS ( UMR 7539), 99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France

Received  July 2014 Revised  September 2014 Published  January 2015

We use Wasserstein metrics adapted to study the action of the flow of the BBM equation on probability measures. We prove the continuity of this flow and the stability of invariant measures for finite times.
Citation: Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905
References:
[1]

J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory,, J. Nonlinear Sci., 12 (2002), 283.  doi: 10.1007/s00332-002-0466-4.  Google Scholar

[2]

________, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory,, Nonlinearity, 17 (2004), 925.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[3]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete Contin. Dyn. Syst., 23 (2009), 1241.  doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[4]

J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures,, Comm. Math. Phys., 166 (1994), 1.  doi: 10.1007/BF02099299.  Google Scholar

[5]

R. Brout and I. Prigogine, Statistical mechanics of irreversible processes part viii: general theory of weakly coupled systems,, Physica, 22 (1956), 621.  doi: 10.1016/S0031-8914(56)90009-X.  Google Scholar

[6]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,, Invent. Math., 173 (2008), 449.  doi: 10.1007/s00222-008-0124-z.  Google Scholar

[7]

F. Cacciafesta and A.-S. de Suzzoni, Continuity of the flow of KdV with regard to the Wasserstein metrics and application to an invariant measure,, ArXiv e-prints, (2013).   Google Scholar

[8]

A.-S. de Suzzoni, Wave Turbulence for the BBM Equation: Stability of a Gaussian Statistics Under the Flow of BBM,, Comm. Math. Phys., 326 (2014), 773.  doi: 10.1007/s00220-014-1897-0.  Google Scholar

[9]

J. L. Lebowitz, H. A. Rose and E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equation,, J. Statist. Phys., 50 (1988), 657.  doi: 10.1007/BF01026495.  Google Scholar

[10]

R. Peierls, Zur kinetischen theorie der wärmeleitung in kristallen,, Annalen der Physik, 395 (1929), 1055.  doi: 10.1002/andp.19293950803.  Google Scholar

[11]

V. E. Zakharov and N. N. Filonenko, Weak turbulence of capillary waves,, Journal of Applied Mechanics and Technical Physics, 8 (1967), 37.  doi: 10.1007/BF00915178.  Google Scholar

[12]

P. E. Zhidkov, On invariant measures for some infinite-dimensional dynamical systems,, Ann. Inst. H. Poincaré Phys. Théor., 62 (1995), 267.   Google Scholar

show all references

References:
[1]

J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory,, J. Nonlinear Sci., 12 (2002), 283.  doi: 10.1007/s00332-002-0466-4.  Google Scholar

[2]

________, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory,, Nonlinearity, 17 (2004), 925.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[3]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete Contin. Dyn. Syst., 23 (2009), 1241.  doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[4]

J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures,, Comm. Math. Phys., 166 (1994), 1.  doi: 10.1007/BF02099299.  Google Scholar

[5]

R. Brout and I. Prigogine, Statistical mechanics of irreversible processes part viii: general theory of weakly coupled systems,, Physica, 22 (1956), 621.  doi: 10.1016/S0031-8914(56)90009-X.  Google Scholar

[6]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,, Invent. Math., 173 (2008), 449.  doi: 10.1007/s00222-008-0124-z.  Google Scholar

[7]

F. Cacciafesta and A.-S. de Suzzoni, Continuity of the flow of KdV with regard to the Wasserstein metrics and application to an invariant measure,, ArXiv e-prints, (2013).   Google Scholar

[8]

A.-S. de Suzzoni, Wave Turbulence for the BBM Equation: Stability of a Gaussian Statistics Under the Flow of BBM,, Comm. Math. Phys., 326 (2014), 773.  doi: 10.1007/s00220-014-1897-0.  Google Scholar

[9]

J. L. Lebowitz, H. A. Rose and E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equation,, J. Statist. Phys., 50 (1988), 657.  doi: 10.1007/BF01026495.  Google Scholar

[10]

R. Peierls, Zur kinetischen theorie der wärmeleitung in kristallen,, Annalen der Physik, 395 (1929), 1055.  doi: 10.1002/andp.19293950803.  Google Scholar

[11]

V. E. Zakharov and N. N. Filonenko, Weak turbulence of capillary waves,, Journal of Applied Mechanics and Technical Physics, 8 (1967), 37.  doi: 10.1007/BF00915178.  Google Scholar

[12]

P. E. Zhidkov, On invariant measures for some infinite-dimensional dynamical systems,, Ann. Inst. H. Poincaré Phys. Théor., 62 (1995), 267.   Google Scholar

[1]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[9]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[12]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[13]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[14]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[15]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[18]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[19]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]