-
Previous Article
Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions
- DCDS Home
- This Issue
-
Next Article
Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures
Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity
1. | Department of Mathematics & IMS, Nanjing University, Nanjing, 210093, China, China |
References:
[1] |
C. O. Alves and S. H. M. Soares, On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations, J. Math. Anal. Appl., 296 (2004), 563-577.
doi: 10.1016/j.jmaa.2004.04.022. |
[2] |
C. O. Alves and S. H. M. Soares, Nodal solutions for singularly perturbed equations with critical exponential growth, J. Differential Equations, 234 (2007), 464-484.
doi: 10.1016/j.jde.2006.12.006. |
[3] |
A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.
doi: 10.4171/JEMS/24. |
[4] |
A. Ambrosetti and Z.-Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral Equations, 18 (2005), 1321-1332. |
[5] |
T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math., 96 (2005), 1-18.
doi: 10.1007/BF02787822. |
[6] |
T. Bartsch, C. Mónica and T. Weth, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Math. Ann., 338 (2007), 147-185.
doi: 10.1007/s00208-006-0071-1. |
[7] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[8] |
J. Byeon and Z.-Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials, J. Eur. Math. Soc., 8 (2006), 217-228.
doi: 10.4171/JEMS/48. |
[9] |
D. Cao, Nontrivial solutions of semilinear elliptic equation with critical exponent in $\mathbbR^{2}$, Comm. Partial Differential Equations, 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[10] |
M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[11] |
J. M. do Ó and M. A. S. Souto, On a class of nonlinear Schrödinger equations in $\mathbbR^{2}$ involving critical growth, J. Differential Equations, 174 (2001), 289-311.
doi: 10.1006/jdeq.2000.3946. |
[12] |
M. Fei and H. Yin, Existence and concentration of bound states of nonlinear Schrödinger equations with compactly supported and competing potentials, Pacific. J. Math., 244 (2010), 261-296.
doi: 10.2140/pjm.2010.244.261. |
[13] |
D. G. de Figueiredo, J. M. do Ó and B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure. Appl. Math., 55 (2002), 135-152.
doi: 10.1002/cpa.10015. |
[14] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[15] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^N2$, in Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981, 369-402. |
[16] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer, Berlin-New York, 1998. |
[17] |
Z. Liu and Z.-Q. Wang, Sign-changing solutions of nonlinear elliptic equations, Front. Math. China, 3 (2008), 221-238.
doi: 10.1007/s11464-008-0014-0. |
[18] |
E. S. Noussair and J. Wei, On the effect of domain geometry on the existence of nodal solutions in singular perturbations problems, Indiana Univ. Math. J., 46 (1997), 1255-1271.
doi: 10.1512/iumj.1997.46.1401. |
[19] |
E. S. Noussair and J. Wei, On the location of spikes and profile of nodal solutions for a singularly perturbed Neumann problem, Comm. Partial Differential Equations, 23 (1998), 793-816.
doi: 10.1080/03605309808821366. |
[20] |
Y. Sato, Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency, Commun. Pure. Appl. Anal., 7 (2008), 883-903.
doi: 10.3934/cpaa.2008.7.883. |
[21] |
X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.
doi: 10.1007/BF02096642. |
[22] |
X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655.
doi: 10.1137/S0036141095290240. |
[23] |
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[24] |
H. Yin and P. Zhang, Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity, J. Differential Equations, 247 (2009), 618-647.
doi: 10.1016/j.jde.2009.03.002. |
show all references
References:
[1] |
C. O. Alves and S. H. M. Soares, On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations, J. Math. Anal. Appl., 296 (2004), 563-577.
doi: 10.1016/j.jmaa.2004.04.022. |
[2] |
C. O. Alves and S. H. M. Soares, Nodal solutions for singularly perturbed equations with critical exponential growth, J. Differential Equations, 234 (2007), 464-484.
doi: 10.1016/j.jde.2006.12.006. |
[3] |
A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.
doi: 10.4171/JEMS/24. |
[4] |
A. Ambrosetti and Z.-Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral Equations, 18 (2005), 1321-1332. |
[5] |
T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math., 96 (2005), 1-18.
doi: 10.1007/BF02787822. |
[6] |
T. Bartsch, C. Mónica and T. Weth, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Math. Ann., 338 (2007), 147-185.
doi: 10.1007/s00208-006-0071-1. |
[7] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[8] |
J. Byeon and Z.-Q. Wang, Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials, J. Eur. Math. Soc., 8 (2006), 217-228.
doi: 10.4171/JEMS/48. |
[9] |
D. Cao, Nontrivial solutions of semilinear elliptic equation with critical exponent in $\mathbbR^{2}$, Comm. Partial Differential Equations, 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[10] |
M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[11] |
J. M. do Ó and M. A. S. Souto, On a class of nonlinear Schrödinger equations in $\mathbbR^{2}$ involving critical growth, J. Differential Equations, 174 (2001), 289-311.
doi: 10.1006/jdeq.2000.3946. |
[12] |
M. Fei and H. Yin, Existence and concentration of bound states of nonlinear Schrödinger equations with compactly supported and competing potentials, Pacific. J. Math., 244 (2010), 261-296.
doi: 10.2140/pjm.2010.244.261. |
[13] |
D. G. de Figueiredo, J. M. do Ó and B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure. Appl. Math., 55 (2002), 135-152.
doi: 10.1002/cpa.10015. |
[14] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[15] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^N2$, in Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981, 369-402. |
[16] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer, Berlin-New York, 1998. |
[17] |
Z. Liu and Z.-Q. Wang, Sign-changing solutions of nonlinear elliptic equations, Front. Math. China, 3 (2008), 221-238.
doi: 10.1007/s11464-008-0014-0. |
[18] |
E. S. Noussair and J. Wei, On the effect of domain geometry on the existence of nodal solutions in singular perturbations problems, Indiana Univ. Math. J., 46 (1997), 1255-1271.
doi: 10.1512/iumj.1997.46.1401. |
[19] |
E. S. Noussair and J. Wei, On the location of spikes and profile of nodal solutions for a singularly perturbed Neumann problem, Comm. Partial Differential Equations, 23 (1998), 793-816.
doi: 10.1080/03605309808821366. |
[20] |
Y. Sato, Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency, Commun. Pure. Appl. Anal., 7 (2008), 883-903.
doi: 10.3934/cpaa.2008.7.883. |
[21] |
X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.
doi: 10.1007/BF02096642. |
[22] |
X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633-655.
doi: 10.1137/S0036141095290240. |
[23] |
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[24] |
H. Yin and P. Zhang, Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity, J. Differential Equations, 247 (2009), 618-647.
doi: 10.1016/j.jde.2009.03.002. |
[1] |
Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure and Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883 |
[2] |
Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255 |
[3] |
Xudong Shang, Jihui Zhang. Multi-peak positive solutions for a fractional nonlinear elliptic equation. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3183-3201. doi: 10.3934/dcds.2015.35.3183 |
[4] |
Minbo Yang, Jianjun Zhang, Yimin Zhang. Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (2) : 493-512. doi: 10.3934/cpaa.2017025 |
[5] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[6] |
Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004 |
[7] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[8] |
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 |
[9] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807 |
[10] |
Vincenzo Ambrosio. Concentration phenomena for critical fractional Schrödinger systems. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2085-2123. doi: 10.3934/cpaa.2018099 |
[11] |
Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487 |
[12] |
Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108 |
[13] |
Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909 |
[14] |
Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1633-1679. doi: 10.3934/cpaa.2021035 |
[15] |
Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377 |
[16] |
Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359 |
[17] |
Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120 |
[18] |
Vincenzo Ambrosio. The nonlinear fractional relativistic Schrödinger equation: Existence, multiplicity, decay and concentration results. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5659-5705. doi: 10.3934/dcds.2021092 |
[19] |
Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125 |
[20] |
Yong Luo, Shu Zhang. Concentration behavior of ground states for $ L^2 $-critical Schrödinger Equation with a spatially decaying nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1481-1504. doi: 10.3934/cpaa.2022026 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]