Citation: |
[1] |
V. I. Arnol'd, V. V. Kozlov and A. I. Neishtadt, Dynamical Systems III (Mathematical Aspects of Classical and Celestial Mechanics), Third edition, Encyclopaedia of Mathematical Sciences, 3, Springer-Verlag, Berlin, 2006. |
[2] |
R. F. Bikbaev and S. B. Kuksin, On the parametrization of finite-gap solutions by frequency and wavenumber vectors and a theorem of I. Krichever, Lett. Math. Phys., 28 (1993), 115-122.doi: 10.1007/BF00750304. |
[3] |
E. Date and S. Tanaka, Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda lattice, Progr. Theor. Phys., 55 (1976), 457-465.doi: 10.1143/PTP.55.457. |
[4] |
H. Flaschka, The Toda lattice. I. Existence of integrals, Phys. Rev. Sect. B, 9 (1974), 1924-1925.doi: 10.1103/PhysRevB.9.1924. |
[5] |
E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, in Collected Papers of Enrico Fermi, University of Chicago Press, Chicago, 2 (1965), 978-988; Theory, Methods and Applications, 2nd edition, Marcel Dekker, New York, 2000. |
[6] |
B. Grébert and T. Kappeler, Symmetries of the nonlinear Schrödinger equation, Bull. Soc. math. France, 130 (2002), 603-618. |
[7] |
A. Henrici and T. Kappeler, Global action-angle variables for the periodic Toda lattice, Int. Math. Res. Not., (2008), Art. ID rnn031, 52 pp.doi: 10.1093/imrn/rnn031. |
[8] |
A. Henrici and T. Kappeler, Global Birkhoff coordinates for the periodic Toda lattice, Nonlinearity, 21 (2008), 2731-2758.doi: 10.1088/0951-7715/21/12/001. |
[9] |
A. Henrici and T. Kappeler, Birkhoff normal form for the periodic Toda lattice, in Integrable Systems and Random Matrices, Contemp. Math., 458, American Mathematical Society, 2008, Providence, RI, 11-19. |
[10] |
A. Henrici and T. Kappeler, Results on normal forms for FPU chains, Comm. Math. Phys., 278 (2008), 145-177.doi: 10.1007/s00220-007-0387-z. |
[11] |
A. Henrici and T. Kappeler, Resonant normal form for even periodic FPU chains, J. Eur. Math. Soc., 11 (2009), 1025-1056.doi: 10.4171/JEMS/174. |
[12] |
A. Henrici and T. Kappeler, Nekhoroshev theorem for the periodic Toda lattice, Chaos, 19 (2009), 033120, 13 pp.doi: 10.1063/1.3196783. |
[13] |
T. Kappeler, P. Lohrmann, P. Topalov and N. T. Zung, Birkhoff coordinates for the focusing NLS equation, Comm. Math. Phys., 285 (2009), 1087-1107.doi: 10.1007/s00220-008-0543-0. |
[14] |
T. Kappeler and J. Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 45, Springer-Verlag, Berlin, 2003.doi: 10.1007/978-3-662-08054-2. |
[15] |
T. Kappeler and P. Topalov, Global Well-Posedness of KdV in $H^{-1}(\mathbbT,\mathbbR)$, Duke Math. J., 135 (2006), 327-360.doi: 10.1215/S0012-7094-06-13524-X. |
[16] |
P. Lochak, Hamiltonian perturbation theory: Periodic orbits, resonances and intermittency, Nonlinearity, 6 (1993), 885-904.doi: 10.1088/0951-7715/6/6/003. |
[17] |
P. Lochak and A. Neishtadt, Estimates of stability time for nearly integrable systems with a quasi-convex Hamiltonian, Chaos, 2 (1992), 495-499.doi: 10.1063/1.165891. |
[18] |
P. van Moerbeke, The spectrum of Jacobi matrices, Invent. Math., 37 (1976), 45-81.doi: 10.1007/BF01418827. |
[19] |
N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems I, Uspekhi Mat. Nauk, 32 (1977), 5-66; Russian Math. Surveys, 32 (1977), 1-65. |
[20] |
N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems II, Trudy Sem. Petrovsk., 5 (1979), 5-50. |
[21] |
J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math., 35 (1982), 653-696.doi: 10.1002/cpa.3160350504. |
[22] |
J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., 213 (1993), 187-216.doi: 10.1007/BF03025718. |
[23] |
J. Pöschel, On Nekhoroshev's estimate at an elliptic equilibrium, Int. Math. Res. Not., 4 (1999), 203-215.doi: 10.1155/S1073792899000100. |
[24] |
B. Rink, Symmetric invariant manifolds in the Fermi-Pasta-Ulam lattice, Physica D, 175 (2003), 31-42.doi: 10.1016/S0167-2789(02)00694-2. |
[25] |
B. Rink, Proof of Nishida's conjecture on anharmonic lattices, Comm. Math. Phys., 261 (2006), 613-627.doi: 10.1007/s00220-005-1451-1. |
[26] |
G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surveys and Monographs, 72, Amer. Math. Soc., Providence, 2000. |
[27] |
M. Toda, Theory of Nonlinear Lattices, $2^{nd}$ enl. edition, Springer Series in Solid-State Sciences, 20, Springer, New York, 1994. |