July  2015, 35(7): 3015-3037. doi: 10.3934/dcds.2015.35.3015

Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics

1. 

Department of Mathematics, College of Science, Hohai University, Nanjing 210098, China

Received  October 2013 Revised  March 2014 Published  January 2015

The governing equations in radiation hydrodynamics are derived from the conservation laws for macroscopic quantities, which have to be coupled with a radiative transfer equation to account for the radiative effects. In the present paper, we work with a mathematical model for the diffusion approximation of radiation hydrodynamics in the simplified framework of 1-D flows. We prove the existence, uniqueness and regularity of global solutions to an initial-boundary value problem with large data. The existence of global solution is proved by combining the local existence theorem with the global a priori estimates, which are considerably complicated and some new ideas and techniques are thus required. Moreover, it is shown that neither shock waves nor vacuum and concentration in the solution are developed in a finite time although there is a complex interaction between photons and matter.
Citation: Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015
References:
[1]

J. W. Bond, K. M. Watson and J. A. Welch, Atomic Theory of Gas Dynamics,, Addison-Wesley, (1965).   Google Scholar

[2]

C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics,, J. Quant. Spectrosc. Radiat. Transfer, 85 (2004), 385.  doi: 10.1016/S0022-4073(03)00233-4.  Google Scholar

[3]

J. I. Castor, Radiation Hydrodynamics,, Cambridge University Press, (2004).  doi: 10.1017/CBO9780511536182.  Google Scholar

[4]

G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large data,, J. Diff. Eqns., 182 (2002), 344.  doi: 10.1006/jdeq.2001.4111.  Google Scholar

[5]

A. Dedner and C. Rohde, Numerical approximation of entropy solutions for hyperbolic integro-differential equations,, Numer. Math., 97 (2004), 441.  doi: 10.1007/s00211-003-0502-9.  Google Scholar

[6]

A. Dedner and C. Rohde, FV-schemes for a scalar model problem of radiation magneto-hydrodynamics,, in Finite Volumes for Complex Applications III (eds. R. Herbin and D. Kröner), (2002), 165.   Google Scholar

[7]

B. Ducomet and E. Feireisl, On the dynamics of gaseous stars,, Arch. Rational Mech. Anal., 174 (2004), 221.  doi: 10.1007/s00205-004-0326-5.  Google Scholar

[8]

B. Ducomet and E. Feireisl, The equation of magnetohydrodynamics: On the interation between matter and radiation in the evlution of gaseous stars,, Comm. Math. Phys., 266 (2006), 595.  doi: 10.1007/s00220-006-0052-y.  Google Scholar

[9]

B. Ducomet, E. Feireisl and S. Necasova, On a model in radiation hydrodynamics,, Ann. Inst. H. Poincar Anal. Non Linaire, 28 (2011), 797.  doi: 10.1016/j.anihpc.2011.06.002.  Google Scholar

[10]

B. Ducomet and A. Zlotnik, Lyapunov functional method for 1-D radiative and reactive viscous gas dynamics,, Arch. Rational Mech. Anal., 177 (2005), 185.  doi: 10.1007/s00205-005-0363-8.  Google Scholar

[11]

Th. Goudon and P. Lafitte, A coupled model for radiative transfer: Doppler effects, equilib- rium and non equilibrium diffusion asymptotics,, SIAM Multiscale Model. Simul., 4 (2005), 1245.  doi: 10.1137/040621041.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Equations of Second Order,, Springer, (1994).   Google Scholar

[13]

K. Hamer, Nonlinear effects on the propagation of sound waves in a radiating gas,, Quart. J. Mech. Appl. Math., 24 (1971), 155.   Google Scholar

[14]

M. A. Heaslet and B. S. Baldwin, Predictions of the structure of radiation-resisted shock waves,, Phys. Fluids, 6 (1963), 781.  doi: 10.1063/1.1706814.  Google Scholar

[15]

E. Hopf, Mathematical Problems of Radiative Equilibrium,, Stechert-Hafner, (1964).   Google Scholar

[16]

S. Jiang, F. Xie and J. W. Zhang, A global existence result in radiation hydrodynamics,, in Industrial and Applied Mathematics in China, (2009), 25.   Google Scholar

[17]

S. Kawashima and S. Nishibata, A singular limit for hyperbolic-elliptic coupled systems in radiation hydrodynamics,, Indiana Univ. Math. J., 50 (2001), 567.  doi: 10.1512/iumj.2001.50.1797.  Google Scholar

[18]

S. Kawashima and S. Nishibata, Shock waves for a model system of the radiating gases,, SIAM J. Math. Anal., 30 (1999), 95.   Google Scholar

[19]

S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system of a radiating gas,, Kyushu J. Math., 58 (2004), 211.  doi: 10.2206/kyushujm.58.211.  Google Scholar

[20]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial bounday value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.   Google Scholar

[21]

R. Kippenhahn and A. Weigert, Stellar Structure and Evolution, Springer Verlag,, Berlin-Heidelberg, (1994).   Google Scholar

[22]

C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for radiating gas,, J. Diff. Eqns., 190 (2003), 439.  doi: 10.1016/S0022-0396(02)00158-4.  Google Scholar

[23]

G. M. Lieberman, Second Order Parabolic Differential Equations,, Word Scientific Publishing Co. Pte. Ltd., (1996).  doi: 10.1142/3302.  Google Scholar

[24]

C. Lin, J. F. Coulombel and Th. Goudon, Shock profiles for non equilibrium radiating gases,, Physica D, 218 (2006), 83.  doi: 10.1016/j.physd.2006.04.012.  Google Scholar

[25]

H. Liu and E. Tadmor, Critical thresholds in a convolution model for nonlinear conservation laws,, SIAM J. Math. Anal., 33 (2001), 930.  doi: 10.1137/S0036141001386908.  Google Scholar

[26]

D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics,, Oxford University Press, (1984).   Google Scholar

[27]

T. Nagasawa, On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary,, J. Diff Eqns., 65 (1986), 49.  doi: 10.1016/0022-0396(86)90041-0.  Google Scholar

[28]

S. Nishibata, Asymptotic behavior of solutions to a model system of a radiating gas with discontinuous initial data,, Math. Models Methods Appl. Sci., 10 (2000), 1209.  doi: 10.1142/S0218202500000598.  Google Scholar

[29]

G. C. Pomraning, The Equations of Radiation Hydrodynamics,, Pergamon Press, (1973).   Google Scholar

[30]

S. S. Penner and D. B. Olfe, Radiation and Reentry,, Academic Press, (1968).   Google Scholar

[31]

C. Rohde and F. Xie, Global Existence and blowup phenomenon for a 1D radiation hydrodynamics model problem,, Math. Methods Appl. Sci., 35 (2012), 564.  doi: 10.1002/mma.1593.  Google Scholar

[32]

C. Rohde and W.-A. Yong, The nonrelativistic limit in radiation hydrodynamics: I. Weak entropy solutions for a model problem,, J. Diff. Eqns., 234 (2007), 91.  doi: 10.1016/j.jde.2006.11.010.  Google Scholar

[33]

D. H. Sampson, Radiative constributions to energy and momentum transport in a gas,, Interscience, (1965).   Google Scholar

[34]

P. Secchi, On the motion of gaseous stars in the presence of radiation,, Commu. PDE, 15 (1990), 185.  doi: 10.1080/03605309908820683.  Google Scholar

[35]

V. A. Solonnikov and A. V. Kazhikhov, Existence theorems for the equations of motion of a compressible viscous fluid,, Ann. Rev. Fluid Mech., 13 (1981), 79.  doi: 10.1146/annurev.fl.13.010181.000455.  Google Scholar

[36]

R. N. Thomas, Some Aspects of Non-Equilibrium Thermodynamics in the Presence of a Radiation Field,, University of Colorado Press, (1965).   Google Scholar

[37]

M. Umehara and A. Tani, Global solution to the one-dimensional equations for a self- gravtating viscous radiative and reactive gas,, J. Diff. Eqns., 234 (2007), 439.  doi: 10.1016/j.jde.2006.09.023.  Google Scholar

[38]

Y. B. Zeldovich and Y. P. Raizer, Phsics of shock waves and high-temperture hydrodynamic phenomenon,, Academic Press, (1966).   Google Scholar

[39]

X. Zhong and S. Jiang, Local existence and finite time blow-up in multidimensional radiation hydrodynamics,, J. Math. Fluid Mech., 9 (2007), 543.  doi: 10.1007/s00021-005-0213-3.  Google Scholar

show all references

References:
[1]

J. W. Bond, K. M. Watson and J. A. Welch, Atomic Theory of Gas Dynamics,, Addison-Wesley, (1965).   Google Scholar

[2]

C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics,, J. Quant. Spectrosc. Radiat. Transfer, 85 (2004), 385.  doi: 10.1016/S0022-4073(03)00233-4.  Google Scholar

[3]

J. I. Castor, Radiation Hydrodynamics,, Cambridge University Press, (2004).  doi: 10.1017/CBO9780511536182.  Google Scholar

[4]

G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large data,, J. Diff. Eqns., 182 (2002), 344.  doi: 10.1006/jdeq.2001.4111.  Google Scholar

[5]

A. Dedner and C. Rohde, Numerical approximation of entropy solutions for hyperbolic integro-differential equations,, Numer. Math., 97 (2004), 441.  doi: 10.1007/s00211-003-0502-9.  Google Scholar

[6]

A. Dedner and C. Rohde, FV-schemes for a scalar model problem of radiation magneto-hydrodynamics,, in Finite Volumes for Complex Applications III (eds. R. Herbin and D. Kröner), (2002), 165.   Google Scholar

[7]

B. Ducomet and E. Feireisl, On the dynamics of gaseous stars,, Arch. Rational Mech. Anal., 174 (2004), 221.  doi: 10.1007/s00205-004-0326-5.  Google Scholar

[8]

B. Ducomet and E. Feireisl, The equation of magnetohydrodynamics: On the interation between matter and radiation in the evlution of gaseous stars,, Comm. Math. Phys., 266 (2006), 595.  doi: 10.1007/s00220-006-0052-y.  Google Scholar

[9]

B. Ducomet, E. Feireisl and S. Necasova, On a model in radiation hydrodynamics,, Ann. Inst. H. Poincar Anal. Non Linaire, 28 (2011), 797.  doi: 10.1016/j.anihpc.2011.06.002.  Google Scholar

[10]

B. Ducomet and A. Zlotnik, Lyapunov functional method for 1-D radiative and reactive viscous gas dynamics,, Arch. Rational Mech. Anal., 177 (2005), 185.  doi: 10.1007/s00205-005-0363-8.  Google Scholar

[11]

Th. Goudon and P. Lafitte, A coupled model for radiative transfer: Doppler effects, equilib- rium and non equilibrium diffusion asymptotics,, SIAM Multiscale Model. Simul., 4 (2005), 1245.  doi: 10.1137/040621041.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Equations of Second Order,, Springer, (1994).   Google Scholar

[13]

K. Hamer, Nonlinear effects on the propagation of sound waves in a radiating gas,, Quart. J. Mech. Appl. Math., 24 (1971), 155.   Google Scholar

[14]

M. A. Heaslet and B. S. Baldwin, Predictions of the structure of radiation-resisted shock waves,, Phys. Fluids, 6 (1963), 781.  doi: 10.1063/1.1706814.  Google Scholar

[15]

E. Hopf, Mathematical Problems of Radiative Equilibrium,, Stechert-Hafner, (1964).   Google Scholar

[16]

S. Jiang, F. Xie and J. W. Zhang, A global existence result in radiation hydrodynamics,, in Industrial and Applied Mathematics in China, (2009), 25.   Google Scholar

[17]

S. Kawashima and S. Nishibata, A singular limit for hyperbolic-elliptic coupled systems in radiation hydrodynamics,, Indiana Univ. Math. J., 50 (2001), 567.  doi: 10.1512/iumj.2001.50.1797.  Google Scholar

[18]

S. Kawashima and S. Nishibata, Shock waves for a model system of the radiating gases,, SIAM J. Math. Anal., 30 (1999), 95.   Google Scholar

[19]

S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system of a radiating gas,, Kyushu J. Math., 58 (2004), 211.  doi: 10.2206/kyushujm.58.211.  Google Scholar

[20]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial bounday value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.   Google Scholar

[21]

R. Kippenhahn and A. Weigert, Stellar Structure and Evolution, Springer Verlag,, Berlin-Heidelberg, (1994).   Google Scholar

[22]

C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for radiating gas,, J. Diff. Eqns., 190 (2003), 439.  doi: 10.1016/S0022-0396(02)00158-4.  Google Scholar

[23]

G. M. Lieberman, Second Order Parabolic Differential Equations,, Word Scientific Publishing Co. Pte. Ltd., (1996).  doi: 10.1142/3302.  Google Scholar

[24]

C. Lin, J. F. Coulombel and Th. Goudon, Shock profiles for non equilibrium radiating gases,, Physica D, 218 (2006), 83.  doi: 10.1016/j.physd.2006.04.012.  Google Scholar

[25]

H. Liu and E. Tadmor, Critical thresholds in a convolution model for nonlinear conservation laws,, SIAM J. Math. Anal., 33 (2001), 930.  doi: 10.1137/S0036141001386908.  Google Scholar

[26]

D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics,, Oxford University Press, (1984).   Google Scholar

[27]

T. Nagasawa, On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary,, J. Diff Eqns., 65 (1986), 49.  doi: 10.1016/0022-0396(86)90041-0.  Google Scholar

[28]

S. Nishibata, Asymptotic behavior of solutions to a model system of a radiating gas with discontinuous initial data,, Math. Models Methods Appl. Sci., 10 (2000), 1209.  doi: 10.1142/S0218202500000598.  Google Scholar

[29]

G. C. Pomraning, The Equations of Radiation Hydrodynamics,, Pergamon Press, (1973).   Google Scholar

[30]

S. S. Penner and D. B. Olfe, Radiation and Reentry,, Academic Press, (1968).   Google Scholar

[31]

C. Rohde and F. Xie, Global Existence and blowup phenomenon for a 1D radiation hydrodynamics model problem,, Math. Methods Appl. Sci., 35 (2012), 564.  doi: 10.1002/mma.1593.  Google Scholar

[32]

C. Rohde and W.-A. Yong, The nonrelativistic limit in radiation hydrodynamics: I. Weak entropy solutions for a model problem,, J. Diff. Eqns., 234 (2007), 91.  doi: 10.1016/j.jde.2006.11.010.  Google Scholar

[33]

D. H. Sampson, Radiative constributions to energy and momentum transport in a gas,, Interscience, (1965).   Google Scholar

[34]

P. Secchi, On the motion of gaseous stars in the presence of radiation,, Commu. PDE, 15 (1990), 185.  doi: 10.1080/03605309908820683.  Google Scholar

[35]

V. A. Solonnikov and A. V. Kazhikhov, Existence theorems for the equations of motion of a compressible viscous fluid,, Ann. Rev. Fluid Mech., 13 (1981), 79.  doi: 10.1146/annurev.fl.13.010181.000455.  Google Scholar

[36]

R. N. Thomas, Some Aspects of Non-Equilibrium Thermodynamics in the Presence of a Radiation Field,, University of Colorado Press, (1965).   Google Scholar

[37]

M. Umehara and A. Tani, Global solution to the one-dimensional equations for a self- gravtating viscous radiative and reactive gas,, J. Diff. Eqns., 234 (2007), 439.  doi: 10.1016/j.jde.2006.09.023.  Google Scholar

[38]

Y. B. Zeldovich and Y. P. Raizer, Phsics of shock waves and high-temperture hydrodynamic phenomenon,, Academic Press, (1966).   Google Scholar

[39]

X. Zhong and S. Jiang, Local existence and finite time blow-up in multidimensional radiation hydrodynamics,, J. Math. Fluid Mech., 9 (2007), 543.  doi: 10.1007/s00021-005-0213-3.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[3]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[4]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[5]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[6]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[7]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[14]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[15]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[16]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[17]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[18]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[19]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]