July  2015, 35(7): 3059-3086. doi: 10.3934/dcds.2015.35.3059

On regular solutions of the $3$D compressible isentropic Euler-Boltzmann equations with vacuum

1. 

Department of Mathematics and Key Lab of Scientific and Engineering Computing (MOE), Shanghai Jiao Tong University, Shanghai 200240

2. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Received  September 2013 Revised  November 2014 Published  January 2015

In this paper, we discuss the Cauchy problem for the compressible isentropic Euler-Boltzmann equations with vacuum in radiation hydrodynamics. We establish the existence of a unique local regular solution with vacuum by the theory of quasi-linear symmetric hyperbolic systems and some techniques dealing with the complexity caused by the coupling between fluid and radiation field under some physical assumptions for the radiation quantities. Moreover, it is interesting to show the non-global existence of regular solutions caused by the effect of vacuum for polytropic gases with adiabatic exponent $1<\gamma\leq 3$ via some observations on the propagation of the radiation field. Compared with [11][15][20], some new initial conditions that will lead to the finite time blow-up for classical solutions have been introduced. These blow-up results tell us that the radiation effect on the fluid is not strong enough to prevent the formation of singularities caused by the appearance of vacuum.
Citation: Yachun Li, Shengguo Zhu. On regular solutions of the $3$D compressible isentropic Euler-Boltzmann equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3059-3086. doi: 10.3934/dcds.2015.35.3059
References:
[1]

C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation hydrodynamics,, J. Quant. Spectroscopy Rad. Transf., 85 (2004), 385.  doi: 10.1016/S0022-4073(03)00233-4.  Google Scholar

[2]

B. Ducomet, E. Feireisl and Š. Nečasová, On a model in radiation hydrodynamics,, Ann. Inst. H. Poincaré. (C) Non Line. Anal., 28 (2011), 797.  doi: 10.1016/j.anihpc.2011.06.002.  Google Scholar

[3]

B. Ducomet and Š. Nečasová, Global weak solutions to the 1-D compressible Navier-Stokes equations with radiation,, Commun. Math. Anal., 8 (2010), 23.   Google Scholar

[4]

B. Ducomet and Š. Nečasová, Large time behavior of the motion of a viscous heat-conducting one-dimensional gas coupled to radiation,, Annali di Matematica Pura ed Applicata , 191 (2012), 219.  doi: 10.1007/s10231-010-0180-z.  Google Scholar

[5]

P. Jiang and D. Wang, Formation of singularities of solutions to the three-dimensional Euler-Boltzmann equations in radiation hydrodynamics,, Nonlinearity, 23 (2010), 809.  doi: 10.1088/0951-7715/23/4/003.  Google Scholar

[6]

S. Jiang and X. Zhong, Local existence and fiinte-time blow-up in multidimensional radiation hydrodynamics,, J. Math. Fluid Mech., 9 (2007), 543.  doi: 10.1007/s00021-005-0213-3.  Google Scholar

[7]

R. Kippenhahn and A. Weigert, Stellar structure and Evolution,, Springer, (1994).   Google Scholar

[8]

P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Phys., 5 (1964), 611.  doi: 10.1063/1.1704154.  Google Scholar

[9]

Y. Li and S. Zhu, Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum,, J. Differential Equations, 256 (2014), 3943.  doi: 10.1016/j.jde.2014.03.007.  Google Scholar

[10]

Y. Li and S. Zhu, Existence results for the compressible radiation hydrodynamics equations with vacuum,, 2013, ().   Google Scholar

[11]

T. Liu and T. Yang, Compressible Euler equations with vacuum,, J. Differential Equations, 140 (1997), 223.  doi: 10.1006/jdeq.1997.3281.  Google Scholar

[12]

T. Liu, Compressible flow with damping and vacuum,, Japan J. Indust. Appl. Math., 13 (1996), 25.  doi: 10.1007/BF03167296.  Google Scholar

[13]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Science, 53 (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[14]

T. Makino, Blowing up solutions of the Euler-Possion equation for the evolution of gaseous stars,, Trans. Theo. Statist. Phys., 21 (1992), 615.  doi: 10.1080/00411459208203801.  Google Scholar

[15]

T. Makino, S. Ukai and S. Kawashima, Sur la solution à support compact de equations d'Euler compressible,, Japan. J. Appl. Math., 3 (1986), 249.  doi: 10.1007/BF03167100.  Google Scholar

[16]

J. Neumann, Discussion on the Existence and Uniqueness or Multiplicity of Solutions of the Aerodynamical Equations,, Collected works of J. Von Neumann, (1949).   Google Scholar

[17]

G. Pomrancing, The Equations of Radiation Hydrodynamics,, Oxford, (1973).   Google Scholar

[18]

T. Sideris, T. Becca and D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with Damping,, Commun. Part. Differ. Equations, 28 (2003), 795.  doi: 10.1081/PDE-120020497.  Google Scholar

[19]

T. Sideris, Formation of singulirities in three-dimensional compressible fluids,, Commun. Math. Phys., 101 (1985), 475.  doi: 10.1007/BF01210741.  Google Scholar

[20]

Z. Xin and W. Yan, On blow-up of classical solutions to the compressible Navier-Stokes Equations,, Commun. Math. Phys., 321 (2013), 529.  doi: 10.1007/s00220-012-1610-0.  Google Scholar

[21]

C. Xu and T. Yang, Local existence with physical vacuum boundary condition to Euler equations with damping,, J. Differertial Equations, 210 (2005), 217.  doi: 10.1016/j.jde.2004.06.005.  Google Scholar

show all references

References:
[1]

C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation hydrodynamics,, J. Quant. Spectroscopy Rad. Transf., 85 (2004), 385.  doi: 10.1016/S0022-4073(03)00233-4.  Google Scholar

[2]

B. Ducomet, E. Feireisl and Š. Nečasová, On a model in radiation hydrodynamics,, Ann. Inst. H. Poincaré. (C) Non Line. Anal., 28 (2011), 797.  doi: 10.1016/j.anihpc.2011.06.002.  Google Scholar

[3]

B. Ducomet and Š. Nečasová, Global weak solutions to the 1-D compressible Navier-Stokes equations with radiation,, Commun. Math. Anal., 8 (2010), 23.   Google Scholar

[4]

B. Ducomet and Š. Nečasová, Large time behavior of the motion of a viscous heat-conducting one-dimensional gas coupled to radiation,, Annali di Matematica Pura ed Applicata , 191 (2012), 219.  doi: 10.1007/s10231-010-0180-z.  Google Scholar

[5]

P. Jiang and D. Wang, Formation of singularities of solutions to the three-dimensional Euler-Boltzmann equations in radiation hydrodynamics,, Nonlinearity, 23 (2010), 809.  doi: 10.1088/0951-7715/23/4/003.  Google Scholar

[6]

S. Jiang and X. Zhong, Local existence and fiinte-time blow-up in multidimensional radiation hydrodynamics,, J. Math. Fluid Mech., 9 (2007), 543.  doi: 10.1007/s00021-005-0213-3.  Google Scholar

[7]

R. Kippenhahn and A. Weigert, Stellar structure and Evolution,, Springer, (1994).   Google Scholar

[8]

P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Phys., 5 (1964), 611.  doi: 10.1063/1.1704154.  Google Scholar

[9]

Y. Li and S. Zhu, Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum,, J. Differential Equations, 256 (2014), 3943.  doi: 10.1016/j.jde.2014.03.007.  Google Scholar

[10]

Y. Li and S. Zhu, Existence results for the compressible radiation hydrodynamics equations with vacuum,, 2013, ().   Google Scholar

[11]

T. Liu and T. Yang, Compressible Euler equations with vacuum,, J. Differential Equations, 140 (1997), 223.  doi: 10.1006/jdeq.1997.3281.  Google Scholar

[12]

T. Liu, Compressible flow with damping and vacuum,, Japan J. Indust. Appl. Math., 13 (1996), 25.  doi: 10.1007/BF03167296.  Google Scholar

[13]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Science, 53 (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[14]

T. Makino, Blowing up solutions of the Euler-Possion equation for the evolution of gaseous stars,, Trans. Theo. Statist. Phys., 21 (1992), 615.  doi: 10.1080/00411459208203801.  Google Scholar

[15]

T. Makino, S. Ukai and S. Kawashima, Sur la solution à support compact de equations d'Euler compressible,, Japan. J. Appl. Math., 3 (1986), 249.  doi: 10.1007/BF03167100.  Google Scholar

[16]

J. Neumann, Discussion on the Existence and Uniqueness or Multiplicity of Solutions of the Aerodynamical Equations,, Collected works of J. Von Neumann, (1949).   Google Scholar

[17]

G. Pomrancing, The Equations of Radiation Hydrodynamics,, Oxford, (1973).   Google Scholar

[18]

T. Sideris, T. Becca and D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with Damping,, Commun. Part. Differ. Equations, 28 (2003), 795.  doi: 10.1081/PDE-120020497.  Google Scholar

[19]

T. Sideris, Formation of singulirities in three-dimensional compressible fluids,, Commun. Math. Phys., 101 (1985), 475.  doi: 10.1007/BF01210741.  Google Scholar

[20]

Z. Xin and W. Yan, On blow-up of classical solutions to the compressible Navier-Stokes Equations,, Commun. Math. Phys., 321 (2013), 529.  doi: 10.1007/s00220-012-1610-0.  Google Scholar

[21]

C. Xu and T. Yang, Local existence with physical vacuum boundary condition to Euler equations with damping,, J. Differertial Equations, 210 (2005), 217.  doi: 10.1016/j.jde.2004.06.005.  Google Scholar

[1]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[5]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[6]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[7]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[10]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[11]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[14]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]