\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Variational analysis of semilinear plate equation with free boundary conditions

Abstract Related Papers Cited by
  • We present a variational analysis for the semilinear equation of the vibrating plate $x_{t t}(t,y)+\Delta ^{2}x(t,y)+l(t,y,x(t,y))=0$ in a bounded domain and a free nonlinear boundary condition $\Delta x(t,y)=H_{x}(t,y,x(t,y))-Q_{x}(t,y,x(t,y))$. In this context new dual variational methods are developed. Applying a variational approach we discuss a stability of solutions with respect to initial conditions.
    Mathematics Subject Classification: Primary: 35L05; Secondary: 35L20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source, Calc. Var. Partial Differential Equations, 34 (2009), 377-411.doi: 10.1007/s00526-008-0188-z.

    [2]

    V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms, Trans. Amer. Math. Soc., 357 (2005), 2571-2611.doi: 10.1090/S0002-9947-05-03880-8.

    [3]

    L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683.doi: 10.1016/j.jde.2010.03.009.

    [4]

    L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms, Mathematische Nachrichten, 284 (2011), 2032-2064.doi: 10.1002/mana.200910182.

    [5]

    L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities, Mathematics and Computers in Simulation, 82 (2012), 1017-1029.doi: 10.1016/j.matcom.2011.04.006.

    [6]

    V. L. Carbone, M. J. D. Nascimento, K. Schiabel-Silva and R. P. Silva, Pullback attractors for a singularly nonautonomous plate equation, Electronic Journal of Differential Equations, (2011), 1-13.

    [7]

    M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term, Comm. Anal. Geom., 10 (2002), 451-466.

    [8]

    M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.doi: 10.1016/j.jde.2004.04.011.

    [9]

    V. V. Chepyzhov, M. I. Vishik and S. V. Zelik, Strong trajectory attractors for dissipative Euler equations, J. Math. Pures Appl., 96 (2011), 395-407.doi: 10.1016/j.matpur.2011.04.007.

    [10]

    I. Chueshov, Convergence of solutions of von Karman evolution equations to equilibria, Appl. Anal., 91 (2012), 1699-1715.doi: 10.1080/00036811.2011.577930.

    [11]

    I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with nonlinear boundary-interior damping, J. Differential Equations, 233 (2007), 42-86.doi: 10.1016/j.jde.2006.09.019.

    [12]

    I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with non-linear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp.doi: 10.1090/memo/0912.

    [13]

    I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer-Verlag, 2010.doi: 10.1007/978-0-387-87712-9.

    [14]

    I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Studies Math. Appl. I, Noth-Holland Publ. Co., Amsterdam-Oxford, 1976.

    [15]

    A. Favini, I. Lasiecka, M. A. Horn and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation, Differential Integral Equations, 9 (1996), 267-294.

    [16]

    J. R. Kang, Global attractor for an extensible beam equation with localized nonlinear damping and linear memory, Math. Methods Appl. Sci., 34 (2011), 1430-1439.doi: 10.1002/mma.1450.

    [17]

    J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, 1989.doi: 10.1137/1.9781611970821.

    [18]

    I. Lasiecka, Mathematical Control Theory of Coupled PDE's, CMBS-NSF Lecture Notes, SIAM, 2002.doi: 10.1137/1.9780898717099.

    [19]

    I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.

    [20]

    H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.

    [21]

    J.-L. Lions, Quelques Méthodes de Résolution de Problémes aux Limites non Linéaires, Dunod, Paris, 1969.

    [22]

    A. Nowakowski and D. O'Regan, Periodic solutions for forced vibrations of beam equation with nonmonotone nonlinearities, Multidimensional case, submmited.

    [23]

    A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions, Nonlinear Anal., 73 (2010), 1495-1514.doi: 10.1016/j.na.2010.04.035.

    [24]

    R. Parreira da Silva, Lower semicontinuity of pullback attractors for a singularly nonautonomous plate equation, Electronic Journal of Differential Equations, (2012), 1-8.

    [25]

    M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations, Bol. Soc. Parana. Mat., 25 (2007), 77-90.doi: 10.5269/bspm.v25i1-2.7427.

    [26]

    H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japonicea, 17 (1972), 173-193.

    [27]

    E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms, Glasg. Math. J., 44 (2002), 375-395.doi: 10.1017/S0017089502030045.

    [28]

    B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential, SIAM J. Math. Anal., 36 (2005), 1426-1433.doi: 10.1137/S0036141004440198.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(168) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return