July  2015, 35(7): 3133-3154. doi: 10.3934/dcds.2015.35.3133

Variational analysis of semilinear plate equation with free boundary conditions

1. 

University of Lodz, Faculty of Math & Computer Sciences, Banacha 22, 90-238 Lodz

Received  September 2013 Revised  November 2014 Published  January 2015

We present a variational analysis for the semilinear equation of the vibrating plate $x_{t t}(t,y)+\Delta ^{2}x(t,y)+l(t,y,x(t,y))=0$ in a bounded domain and a free nonlinear boundary condition $\Delta x(t,y)=H_{x}(t,y,x(t,y))-Q_{x}(t,y,x(t,y))$. In this context new dual variational methods are developed. Applying a variational approach we discuss a stability of solutions with respect to initial conditions.
Citation: Andrzej Nowakowski. Variational analysis of semilinear plate equation with free boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3133-3154. doi: 10.3934/dcds.2015.35.3133
References:
[1]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source,, Calc. Var. Partial Differential Equations, 34 (2009), 377. doi: 10.1007/s00526-008-0188-z. Google Scholar

[2]

V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms,, Trans. Amer. Math. Soc., 357 (2005), 2571. doi: 10.1090/S0002-9947-05-03880-8. Google Scholar

[3]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping,, J. Differential Equations, 249 (2010), 654. doi: 10.1016/j.jde.2010.03.009. Google Scholar

[4]

L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms,, Mathematische Nachrichten, 284 (2011), 2032. doi: 10.1002/mana.200910182. Google Scholar

[5]

L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities,, Mathematics and Computers in Simulation, 82 (2012), 1017. doi: 10.1016/j.matcom.2011.04.006. Google Scholar

[6]

V. L. Carbone, M. J. D. Nascimento, K. Schiabel-Silva and R. P. Silva, Pullback attractors for a singularly nonautonomous plate equation,, Electronic Journal of Differential Equations, (2011), 1. Google Scholar

[7]

M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term,, Comm. Anal. Geom., 10 (2002), 451. Google Scholar

[8]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,, J. Differential Equations, 203 (2004), 119. doi: 10.1016/j.jde.2004.04.011. Google Scholar

[9]

V. V. Chepyzhov, M. I. Vishik and S. V. Zelik, Strong trajectory attractors for dissipative Euler equations,, J. Math. Pures Appl., 96 (2011), 395. doi: 10.1016/j.matpur.2011.04.007. Google Scholar

[10]

I. Chueshov, Convergence of solutions of von Karman evolution equations to equilibria,, Appl. Anal., 91 (2012), 1699. doi: 10.1080/00036811.2011.577930. Google Scholar

[11]

I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with nonlinear boundary-interior damping,, J. Differential Equations, 233 (2007), 42. doi: 10.1016/j.jde.2006.09.019. Google Scholar

[12]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with non-linear damping,, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912. Google Scholar

[13]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer-Verlag, (2010). doi: 10.1007/978-0-387-87712-9. Google Scholar

[14]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Studies Math. Appl. I, (1976). Google Scholar

[15]

A. Favini, I. Lasiecka, M. A. Horn and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation,, Differential Integral Equations, 9 (1996), 267. Google Scholar

[16]

J. R. Kang, Global attractor for an extensible beam equation with localized nonlinear damping and linear memory,, Math. Methods Appl. Sci., 34 (2011), 1430. doi: 10.1002/mma.1450. Google Scholar

[17]

J. Lagnese, Boundary Stabilization of Thin Plates,, SIAM, (1989). doi: 10.1137/1.9781611970821. Google Scholar

[18]

I. Lasiecka, Mathematical Control Theory of Coupled PDE's,, CMBS-NSF Lecture Notes, (2002). doi: 10.1137/1.9780898717099. Google Scholar

[19]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149. Google Scholar

[20]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1. Google Scholar

[21]

J.-L. Lions, Quelques Méthodes de Résolution de Problémes aux Limites non Linéaires,, Dunod, (1969). Google Scholar

[22]

A. Nowakowski and D. O'Regan, Periodic solutions for forced vibrations of beam equation with nonmonotone nonlinearities,, Multidimensional case, (). Google Scholar

[23]

A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions,, Nonlinear Anal., 73 (2010), 1495. doi: 10.1016/j.na.2010.04.035. Google Scholar

[24]

R. Parreira da Silva, Lower semicontinuity of pullback attractors for a singularly nonautonomous plate equation,, Electronic Journal of Differential Equations, (2012), 1. Google Scholar

[25]

M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations,, Bol. Soc. Parana. Mat., 25 (2007), 77. doi: 10.5269/bspm.v25i1-2.7427. Google Scholar

[26]

H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space,, Math. Japonicea, 17 (1972), 173. Google Scholar

[27]

E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms,, Glasg. Math. J., 44 (2002), 375. doi: 10.1017/S0017089502030045. Google Scholar

[28]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426. doi: 10.1137/S0036141004440198. Google Scholar

show all references

References:
[1]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source,, Calc. Var. Partial Differential Equations, 34 (2009), 377. doi: 10.1007/s00526-008-0188-z. Google Scholar

[2]

V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms,, Trans. Amer. Math. Soc., 357 (2005), 2571. doi: 10.1090/S0002-9947-05-03880-8. Google Scholar

[3]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping,, J. Differential Equations, 249 (2010), 654. doi: 10.1016/j.jde.2010.03.009. Google Scholar

[4]

L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms,, Mathematische Nachrichten, 284 (2011), 2032. doi: 10.1002/mana.200910182. Google Scholar

[5]

L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities,, Mathematics and Computers in Simulation, 82 (2012), 1017. doi: 10.1016/j.matcom.2011.04.006. Google Scholar

[6]

V. L. Carbone, M. J. D. Nascimento, K. Schiabel-Silva and R. P. Silva, Pullback attractors for a singularly nonautonomous plate equation,, Electronic Journal of Differential Equations, (2011), 1. Google Scholar

[7]

M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term,, Comm. Anal. Geom., 10 (2002), 451. Google Scholar

[8]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,, J. Differential Equations, 203 (2004), 119. doi: 10.1016/j.jde.2004.04.011. Google Scholar

[9]

V. V. Chepyzhov, M. I. Vishik and S. V. Zelik, Strong trajectory attractors for dissipative Euler equations,, J. Math. Pures Appl., 96 (2011), 395. doi: 10.1016/j.matpur.2011.04.007. Google Scholar

[10]

I. Chueshov, Convergence of solutions of von Karman evolution equations to equilibria,, Appl. Anal., 91 (2012), 1699. doi: 10.1080/00036811.2011.577930. Google Scholar

[11]

I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with nonlinear boundary-interior damping,, J. Differential Equations, 233 (2007), 42. doi: 10.1016/j.jde.2006.09.019. Google Scholar

[12]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with non-linear damping,, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912. Google Scholar

[13]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer-Verlag, (2010). doi: 10.1007/978-0-387-87712-9. Google Scholar

[14]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Studies Math. Appl. I, (1976). Google Scholar

[15]

A. Favini, I. Lasiecka, M. A. Horn and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation,, Differential Integral Equations, 9 (1996), 267. Google Scholar

[16]

J. R. Kang, Global attractor for an extensible beam equation with localized nonlinear damping and linear memory,, Math. Methods Appl. Sci., 34 (2011), 1430. doi: 10.1002/mma.1450. Google Scholar

[17]

J. Lagnese, Boundary Stabilization of Thin Plates,, SIAM, (1989). doi: 10.1137/1.9781611970821. Google Scholar

[18]

I. Lasiecka, Mathematical Control Theory of Coupled PDE's,, CMBS-NSF Lecture Notes, (2002). doi: 10.1137/1.9780898717099. Google Scholar

[19]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149. Google Scholar

[20]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1. Google Scholar

[21]

J.-L. Lions, Quelques Méthodes de Résolution de Problémes aux Limites non Linéaires,, Dunod, (1969). Google Scholar

[22]

A. Nowakowski and D. O'Regan, Periodic solutions for forced vibrations of beam equation with nonmonotone nonlinearities,, Multidimensional case, (). Google Scholar

[23]

A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions,, Nonlinear Anal., 73 (2010), 1495. doi: 10.1016/j.na.2010.04.035. Google Scholar

[24]

R. Parreira da Silva, Lower semicontinuity of pullback attractors for a singularly nonautonomous plate equation,, Electronic Journal of Differential Equations, (2012), 1. Google Scholar

[25]

M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations,, Bol. Soc. Parana. Mat., 25 (2007), 77. doi: 10.5269/bspm.v25i1-2.7427. Google Scholar

[26]

H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space,, Math. Japonicea, 17 (1972), 173. Google Scholar

[27]

E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms,, Glasg. Math. J., 44 (2002), 375. doi: 10.1017/S0017089502030045. Google Scholar

[28]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426. doi: 10.1137/S0036141004440198. Google Scholar

[1]

Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations & Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016

[2]

Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827

[3]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[4]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[5]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[6]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[7]

Scott W. Hansen, Oleg Yu Imanuvilov. Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions. Mathematical Control & Related Fields, 2011, 1 (2) : 189-230. doi: 10.3934/mcrf.2011.1.189

[8]

Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037

[9]

Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations & Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014

[10]

Irena Lasiecka, Roberto Triggiani. A sharp trace result on a thermo-elastic plate equation with coupled hinged/Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 585-598. doi: 10.3934/dcds.1999.5.585

[11]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[12]

Audric Drogoul, Gilles Aubert. The topological gradient method for semi-linear problems and application to edge detection and noise removal. Inverse Problems & Imaging, 2016, 10 (1) : 51-86. doi: 10.3934/ipi.2016.10.51

[13]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[14]

Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317

[15]

Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025

[16]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[17]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure & Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[18]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[19]

Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations & Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557

[20]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]