July  2015, 35(7): 3133-3154. doi: 10.3934/dcds.2015.35.3133

Variational analysis of semilinear plate equation with free boundary conditions

1. 

University of Lodz, Faculty of Math & Computer Sciences, Banacha 22, 90-238 Lodz

Received  September 2013 Revised  November 2014 Published  January 2015

We present a variational analysis for the semilinear equation of the vibrating plate $x_{t t}(t,y)+\Delta ^{2}x(t,y)+l(t,y,x(t,y))=0$ in a bounded domain and a free nonlinear boundary condition $\Delta x(t,y)=H_{x}(t,y,x(t,y))-Q_{x}(t,y,x(t,y))$. In this context new dual variational methods are developed. Applying a variational approach we discuss a stability of solutions with respect to initial conditions.
Citation: Andrzej Nowakowski. Variational analysis of semilinear plate equation with free boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3133-3154. doi: 10.3934/dcds.2015.35.3133
References:
[1]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source,, Calc. Var. Partial Differential Equations, 34 (2009), 377.  doi: 10.1007/s00526-008-0188-z.  Google Scholar

[2]

V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms,, Trans. Amer. Math. Soc., 357 (2005), 2571.  doi: 10.1090/S0002-9947-05-03880-8.  Google Scholar

[3]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping,, J. Differential Equations, 249 (2010), 654.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[4]

L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms,, Mathematische Nachrichten, 284 (2011), 2032.  doi: 10.1002/mana.200910182.  Google Scholar

[5]

L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities,, Mathematics and Computers in Simulation, 82 (2012), 1017.  doi: 10.1016/j.matcom.2011.04.006.  Google Scholar

[6]

V. L. Carbone, M. J. D. Nascimento, K. Schiabel-Silva and R. P. Silva, Pullback attractors for a singularly nonautonomous plate equation,, Electronic Journal of Differential Equations, (2011), 1.   Google Scholar

[7]

M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term,, Comm. Anal. Geom., 10 (2002), 451.   Google Scholar

[8]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,, J. Differential Equations, 203 (2004), 119.  doi: 10.1016/j.jde.2004.04.011.  Google Scholar

[9]

V. V. Chepyzhov, M. I. Vishik and S. V. Zelik, Strong trajectory attractors for dissipative Euler equations,, J. Math. Pures Appl., 96 (2011), 395.  doi: 10.1016/j.matpur.2011.04.007.  Google Scholar

[10]

I. Chueshov, Convergence of solutions of von Karman evolution equations to equilibria,, Appl. Anal., 91 (2012), 1699.  doi: 10.1080/00036811.2011.577930.  Google Scholar

[11]

I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with nonlinear boundary-interior damping,, J. Differential Equations, 233 (2007), 42.  doi: 10.1016/j.jde.2006.09.019.  Google Scholar

[12]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with non-linear damping,, Mem. Amer. Math. Soc., 195 (2008).  doi: 10.1090/memo/0912.  Google Scholar

[13]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer-Verlag, (2010).  doi: 10.1007/978-0-387-87712-9.  Google Scholar

[14]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Studies Math. Appl. I, (1976).   Google Scholar

[15]

A. Favini, I. Lasiecka, M. A. Horn and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation,, Differential Integral Equations, 9 (1996), 267.   Google Scholar

[16]

J. R. Kang, Global attractor for an extensible beam equation with localized nonlinear damping and linear memory,, Math. Methods Appl. Sci., 34 (2011), 1430.  doi: 10.1002/mma.1450.  Google Scholar

[17]

J. Lagnese, Boundary Stabilization of Thin Plates,, SIAM, (1989).  doi: 10.1137/1.9781611970821.  Google Scholar

[18]

I. Lasiecka, Mathematical Control Theory of Coupled PDE's,, CMBS-NSF Lecture Notes, (2002).  doi: 10.1137/1.9780898717099.  Google Scholar

[19]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[20]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1.   Google Scholar

[21]

J.-L. Lions, Quelques Méthodes de Résolution de Problémes aux Limites non Linéaires,, Dunod, (1969).   Google Scholar

[22]

A. Nowakowski and D. O'Regan, Periodic solutions for forced vibrations of beam equation with nonmonotone nonlinearities,, Multidimensional case, ().   Google Scholar

[23]

A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions,, Nonlinear Anal., 73 (2010), 1495.  doi: 10.1016/j.na.2010.04.035.  Google Scholar

[24]

R. Parreira da Silva, Lower semicontinuity of pullback attractors for a singularly nonautonomous plate equation,, Electronic Journal of Differential Equations, (2012), 1.   Google Scholar

[25]

M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations,, Bol. Soc. Parana. Mat., 25 (2007), 77.  doi: 10.5269/bspm.v25i1-2.7427.  Google Scholar

[26]

H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space,, Math. Japonicea, 17 (1972), 173.   Google Scholar

[27]

E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms,, Glasg. Math. J., 44 (2002), 375.  doi: 10.1017/S0017089502030045.  Google Scholar

[28]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426.  doi: 10.1137/S0036141004440198.  Google Scholar

show all references

References:
[1]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source,, Calc. Var. Partial Differential Equations, 34 (2009), 377.  doi: 10.1007/s00526-008-0188-z.  Google Scholar

[2]

V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms,, Trans. Amer. Math. Soc., 357 (2005), 2571.  doi: 10.1090/S0002-9947-05-03880-8.  Google Scholar

[3]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping,, J. Differential Equations, 249 (2010), 654.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[4]

L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms,, Mathematische Nachrichten, 284 (2011), 2032.  doi: 10.1002/mana.200910182.  Google Scholar

[5]

L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities,, Mathematics and Computers in Simulation, 82 (2012), 1017.  doi: 10.1016/j.matcom.2011.04.006.  Google Scholar

[6]

V. L. Carbone, M. J. D. Nascimento, K. Schiabel-Silva and R. P. Silva, Pullback attractors for a singularly nonautonomous plate equation,, Electronic Journal of Differential Equations, (2011), 1.   Google Scholar

[7]

M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term,, Comm. Anal. Geom., 10 (2002), 451.   Google Scholar

[8]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,, J. Differential Equations, 203 (2004), 119.  doi: 10.1016/j.jde.2004.04.011.  Google Scholar

[9]

V. V. Chepyzhov, M. I. Vishik and S. V. Zelik, Strong trajectory attractors for dissipative Euler equations,, J. Math. Pures Appl., 96 (2011), 395.  doi: 10.1016/j.matpur.2011.04.007.  Google Scholar

[10]

I. Chueshov, Convergence of solutions of von Karman evolution equations to equilibria,, Appl. Anal., 91 (2012), 1699.  doi: 10.1080/00036811.2011.577930.  Google Scholar

[11]

I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with nonlinear boundary-interior damping,, J. Differential Equations, 233 (2007), 42.  doi: 10.1016/j.jde.2006.09.019.  Google Scholar

[12]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with non-linear damping,, Mem. Amer. Math. Soc., 195 (2008).  doi: 10.1090/memo/0912.  Google Scholar

[13]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations,, Springer-Verlag, (2010).  doi: 10.1007/978-0-387-87712-9.  Google Scholar

[14]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Studies Math. Appl. I, (1976).   Google Scholar

[15]

A. Favini, I. Lasiecka, M. A. Horn and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation,, Differential Integral Equations, 9 (1996), 267.   Google Scholar

[16]

J. R. Kang, Global attractor for an extensible beam equation with localized nonlinear damping and linear memory,, Math. Methods Appl. Sci., 34 (2011), 1430.  doi: 10.1002/mma.1450.  Google Scholar

[17]

J. Lagnese, Boundary Stabilization of Thin Plates,, SIAM, (1989).  doi: 10.1137/1.9781611970821.  Google Scholar

[18]

I. Lasiecka, Mathematical Control Theory of Coupled PDE's,, CMBS-NSF Lecture Notes, (2002).  doi: 10.1137/1.9780898717099.  Google Scholar

[19]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[20]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1.   Google Scholar

[21]

J.-L. Lions, Quelques Méthodes de Résolution de Problémes aux Limites non Linéaires,, Dunod, (1969).   Google Scholar

[22]

A. Nowakowski and D. O'Regan, Periodic solutions for forced vibrations of beam equation with nonmonotone nonlinearities,, Multidimensional case, ().   Google Scholar

[23]

A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions,, Nonlinear Anal., 73 (2010), 1495.  doi: 10.1016/j.na.2010.04.035.  Google Scholar

[24]

R. Parreira da Silva, Lower semicontinuity of pullback attractors for a singularly nonautonomous plate equation,, Electronic Journal of Differential Equations, (2012), 1.   Google Scholar

[25]

M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations,, Bol. Soc. Parana. Mat., 25 (2007), 77.  doi: 10.5269/bspm.v25i1-2.7427.  Google Scholar

[26]

H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space,, Math. Japonicea, 17 (1972), 173.   Google Scholar

[27]

E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms,, Glasg. Math. J., 44 (2002), 375.  doi: 10.1017/S0017089502030045.  Google Scholar

[28]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential,, SIAM J. Math. Anal., 36 (2005), 1426.  doi: 10.1137/S0036141004440198.  Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[7]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[8]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[9]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[10]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[16]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[18]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[19]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-riemannian einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[20]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]