Advanced Search
Article Contents
Article Contents

Variational analysis of semilinear plate equation with free boundary conditions

Abstract Related Papers Cited by
  • We present a variational analysis for the semilinear equation of the vibrating plate $x_{t t}(t,y)+\Delta ^{2}x(t,y)+l(t,y,x(t,y))=0$ in a bounded domain and a free nonlinear boundary condition $\Delta x(t,y)=H_{x}(t,y,x(t,y))-Q_{x}(t,y,x(t,y))$. In this context new dual variational methods are developed. Applying a variational approach we discuss a stability of solutions with respect to initial conditions.
    Mathematics Subject Classification: Primary: 35L05; Secondary: 35L20.


    \begin{equation} \\ \end{equation}
  • [1]

    C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source, Calc. Var. Partial Differential Equations, 34 (2009), 377-411.doi: 10.1007/s00526-008-0188-z.


    V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms, Trans. Amer. Math. Soc., 357 (2005), 2571-2611.doi: 10.1090/S0002-9947-05-03880-8.


    L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683.doi: 10.1016/j.jde.2010.03.009.


    L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms, Mathematische Nachrichten, 284 (2011), 2032-2064.doi: 10.1002/mana.200910182.


    L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities, Mathematics and Computers in Simulation, 82 (2012), 1017-1029.doi: 10.1016/j.matcom.2011.04.006.


    V. L. Carbone, M. J. D. Nascimento, K. Schiabel-Silva and R. P. Silva, Pullback attractors for a singularly nonautonomous plate equation, Electronic Journal of Differential Equations, (2011), 1-13.


    M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term, Comm. Anal. Geom., 10 (2002), 451-466.


    M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.doi: 10.1016/j.jde.2004.04.011.


    V. V. Chepyzhov, M. I. Vishik and S. V. Zelik, Strong trajectory attractors for dissipative Euler equations, J. Math. Pures Appl., 96 (2011), 395-407.doi: 10.1016/j.matpur.2011.04.007.


    I. Chueshov, Convergence of solutions of von Karman evolution equations to equilibria, Appl. Anal., 91 (2012), 1699-1715.doi: 10.1080/00036811.2011.577930.


    I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with nonlinear boundary-interior damping, J. Differential Equations, 233 (2007), 42-86.doi: 10.1016/j.jde.2006.09.019.


    I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with non-linear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp.doi: 10.1090/memo/0912.


    I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer-Verlag, 2010.doi: 10.1007/978-0-387-87712-9.


    I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Studies Math. Appl. I, Noth-Holland Publ. Co., Amsterdam-Oxford, 1976.


    A. Favini, I. Lasiecka, M. A. Horn and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation, Differential Integral Equations, 9 (1996), 267-294.


    J. R. Kang, Global attractor for an extensible beam equation with localized nonlinear damping and linear memory, Math. Methods Appl. Sci., 34 (2011), 1430-1439.doi: 10.1002/mma.1450.


    J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, 1989.doi: 10.1137/1.9781611970821.


    I. Lasiecka, Mathematical Control Theory of Coupled PDE's, CMBS-NSF Lecture Notes, SIAM, 2002.doi: 10.1137/1.9780898717099.


    I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.


    H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.


    J.-L. Lions, Quelques Méthodes de Résolution de Problémes aux Limites non Linéaires, Dunod, Paris, 1969.


    A. Nowakowski and D. O'Regan, Periodic solutions for forced vibrations of beam equation with nonmonotone nonlinearities, Multidimensional case, submmited.


    A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions, Nonlinear Anal., 73 (2010), 1495-1514.doi: 10.1016/j.na.2010.04.035.


    R. Parreira da Silva, Lower semicontinuity of pullback attractors for a singularly nonautonomous plate equation, Electronic Journal of Differential Equations, (2012), 1-8.


    M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations, Bol. Soc. Parana. Mat., 25 (2007), 77-90.doi: 10.5269/bspm.v25i1-2.7427.


    H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japonicea, 17 (1972), 173-193.


    E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms, Glasg. Math. J., 44 (2002), 375-395.doi: 10.1017/S0017089502030045.


    B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential, SIAM J. Math. Anal., 36 (2005), 1426-1433.doi: 10.1137/S0036141004440198.

  • 加载中

Article Metrics

HTML views() PDF downloads(173) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint