July  2015, 35(7): 3203-3216. doi: 10.3934/dcds.2015.35.3203

Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States

2. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804

Received  June 2014 Revised  December 2014 Published  January 2015

We study similarity solutions of a nonlinear partial differential equation that is a generalization of the heat equation. Substitution of the similarity ansatz reduces the partial differential equation to a nonlinear second-order ordinary differential equation on the half-line with Neumann boundary conditions at both boundaries. The existence and uniqueness of solutions is proven using Ważewski's Principle.
Citation: Tracy L. Stepien, Hal L. Smith. Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3203-3216. doi: 10.3934/dcds.2015.35.3203
References:
[1]

R. P. Agarwal and D. O'Regan, Infinite Interval Problems For Differential, Difference and Integral Equations,, Kluwer Academic Publishers, (2001). doi: 10.1007/978-94-010-0718-4. Google Scholar

[2]

P. Amster and A. Deboli, A Neumann boundary-value problem on an unbounded interval,, Electronic J. of Differential Equations, 2008 (2008), 1. Google Scholar

[3]

J. C. Arciero and D. Swigon, Equation-based models of wound healing and collective cell migration,, in Complex Systems and Computational Biology Approaches to Acute Inflammation (eds. Y. Vodovotz and G. An), (2013), 185. doi: 10.1007/978-1-4614-8008-2_11. Google Scholar

[4]

T. Callaghan, E. Khain, L. M. Sander and R. M. Ziff, A stochastic model for wound healing,, J. Stat. Phys., 122 (2006), 909. doi: 10.1007/s10955-006-9022-1. Google Scholar

[5]

J. K. Hale, Ordinary Differential Equations,, Dover Publications, (2009). Google Scholar

[6]

M. W. Hirsch and H. L. Smith, Competitive and cooperative systems: A mini-review,, in Positive Systems. Proceedings of the First Multidisciplinary Symposium on Positive Systems (POSTA 2003) (eds. Luca Benvenuti, (2003), 183. doi: 10.1007/b79667. Google Scholar

[7]

H. Lian and W. Ge, Solvability for second-order three-point boundary value problems on a half-line,, Appl. Math. Lett., 19 (2006), 1000. doi: 10.1016/j.aml.2005.10.018. Google Scholar

[8]

H. Lian and F. Geng, Multiple unbounded solutions for a boundary value problem on infinite intervals,, Bound. Value Probl., 51 (2011), 1. doi: 10.1186/1687-2770-2011-51. Google Scholar

[9]

B. Liu, J. Li and L. Liu, Existence and uniqueness for an m-point boundary problem at resonance on infinite intervals,, Comput. Math. Appl., 64 (2012), 1677. doi: 10.1016/j.camwa.2012.01.023. Google Scholar

[10]

Q. Mi, D. Swigon, B. Rivière, S. Cetin, Y. Vodovotz and D. J. Hackam, One-dimensional elastic continuum model of enterocyte layer migration,, Biophys. J., 93 (2007), 3745. doi: 10.1529/biophysj.107.112326. Google Scholar

[11]

H. L. Smith, Monotone Dynamical Systems: An introduction to the theory of competitive and cooperative systems,, American Mathematical Society, (1995). Google Scholar

[12]

T. L. Stepien, Collective Cell Migration in Single and Dual Cell Layers,, Ph.D. thesis. University of Pittsburgh, (2013). Google Scholar

[13]

T. L. Stepien and D. Swigon, Traveling waves in a one-dimensional elastic continuum model of cell layer migration with stretch-dependent proliferation,, SIAM J. Appl. Dyn. Syst., 13 (2014), 1489. doi: 10.1137/130941407. Google Scholar

[14]

K. Szymańska, On an asymptotic boundary value problem for second order differential equations,, J. Appl. Anal., 12 (2006), 109. doi: 10.1515/JAA.2006.109. Google Scholar

[15]

K. Szymańska, Resonant problem for some second-order differential equation on the half-line,, Electron. J. Differential Equations, (2007), 1. Google Scholar

[16]

B. Yan, D. O'Regan and R. P. Agarwal, Unbounded solutions for singular boundary value problems on the semi-infinite interval: Upper and lower solutions and multiplicity,, J. Comput. Appl. Math., 197 (2006), 365. doi: 10.1016/j.cam.2005.11.010. Google Scholar

show all references

References:
[1]

R. P. Agarwal and D. O'Regan, Infinite Interval Problems For Differential, Difference and Integral Equations,, Kluwer Academic Publishers, (2001). doi: 10.1007/978-94-010-0718-4. Google Scholar

[2]

P. Amster and A. Deboli, A Neumann boundary-value problem on an unbounded interval,, Electronic J. of Differential Equations, 2008 (2008), 1. Google Scholar

[3]

J. C. Arciero and D. Swigon, Equation-based models of wound healing and collective cell migration,, in Complex Systems and Computational Biology Approaches to Acute Inflammation (eds. Y. Vodovotz and G. An), (2013), 185. doi: 10.1007/978-1-4614-8008-2_11. Google Scholar

[4]

T. Callaghan, E. Khain, L. M. Sander and R. M. Ziff, A stochastic model for wound healing,, J. Stat. Phys., 122 (2006), 909. doi: 10.1007/s10955-006-9022-1. Google Scholar

[5]

J. K. Hale, Ordinary Differential Equations,, Dover Publications, (2009). Google Scholar

[6]

M. W. Hirsch and H. L. Smith, Competitive and cooperative systems: A mini-review,, in Positive Systems. Proceedings of the First Multidisciplinary Symposium on Positive Systems (POSTA 2003) (eds. Luca Benvenuti, (2003), 183. doi: 10.1007/b79667. Google Scholar

[7]

H. Lian and W. Ge, Solvability for second-order three-point boundary value problems on a half-line,, Appl. Math. Lett., 19 (2006), 1000. doi: 10.1016/j.aml.2005.10.018. Google Scholar

[8]

H. Lian and F. Geng, Multiple unbounded solutions for a boundary value problem on infinite intervals,, Bound. Value Probl., 51 (2011), 1. doi: 10.1186/1687-2770-2011-51. Google Scholar

[9]

B. Liu, J. Li and L. Liu, Existence and uniqueness for an m-point boundary problem at resonance on infinite intervals,, Comput. Math. Appl., 64 (2012), 1677. doi: 10.1016/j.camwa.2012.01.023. Google Scholar

[10]

Q. Mi, D. Swigon, B. Rivière, S. Cetin, Y. Vodovotz and D. J. Hackam, One-dimensional elastic continuum model of enterocyte layer migration,, Biophys. J., 93 (2007), 3745. doi: 10.1529/biophysj.107.112326. Google Scholar

[11]

H. L. Smith, Monotone Dynamical Systems: An introduction to the theory of competitive and cooperative systems,, American Mathematical Society, (1995). Google Scholar

[12]

T. L. Stepien, Collective Cell Migration in Single and Dual Cell Layers,, Ph.D. thesis. University of Pittsburgh, (2013). Google Scholar

[13]

T. L. Stepien and D. Swigon, Traveling waves in a one-dimensional elastic continuum model of cell layer migration with stretch-dependent proliferation,, SIAM J. Appl. Dyn. Syst., 13 (2014), 1489. doi: 10.1137/130941407. Google Scholar

[14]

K. Szymańska, On an asymptotic boundary value problem for second order differential equations,, J. Appl. Anal., 12 (2006), 109. doi: 10.1515/JAA.2006.109. Google Scholar

[15]

K. Szymańska, Resonant problem for some second-order differential equation on the half-line,, Electron. J. Differential Equations, (2007), 1. Google Scholar

[16]

B. Yan, D. O'Regan and R. P. Agarwal, Unbounded solutions for singular boundary value problems on the semi-infinite interval: Upper and lower solutions and multiplicity,, J. Comput. Appl. Math., 197 (2006), 365. doi: 10.1016/j.cam.2005.11.010. Google Scholar

[1]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[2]

Virginie Bonnaillie-Noël. Harmonic oscillators with Neumann condition on the half-line. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2221-2237. doi: 10.3934/cpaa.2012.11.2221

[3]

António J.G. Bento, Nicolae Lupa, Mihail Megan, César M. Silva. Integral conditions for nonuniform $μ$-dichotomy on the half-line. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3063-3077. doi: 10.3934/dcdsb.2017163

[4]

Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 637-655. doi: 10.3934/dcdsb.2018200

[5]

Feliz Minhós, Hugo Carrasco. Solvability of higher-order BVPs in the half-line with unbounded nonlinearities. Conference Publications, 2015, 2015 (special) : 841-850. doi: 10.3934/proc.2015.0841

[6]

Bogdan Sasu, Adina Luminiţa Sasu. On the dichotomic behavior of discrete dynamical systems on the half-line. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3057-3084. doi: 10.3934/dcds.2013.33.3057

[7]

Nicola Abatangelo, Serena Dipierro, Mouhamed Moustapha Fall, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1205-1235. doi: 10.3934/dcds.2019052

[8]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[9]

Chérif Amrouche, Yves Raudin. Singular boundary conditions and regularity for the biharmonic problem in the half-space. Communications on Pure & Applied Analysis, 2007, 6 (4) : 957-982. doi: 10.3934/cpaa.2007.6.957

[10]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[11]

Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems & Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239

[12]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[13]

Márcio Cavalcante, Chulkwang Kwak. Local well-posedness of the fifth-order KdV-type equations on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2607-2661. doi: 10.3934/cpaa.2019117

[14]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[15]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[16]

Pablo Amster, Man Kam Kwong, Colin Rogers. A Neumann Boundary Value Problem in Two-Ion Electro-Diffusion with Unequal Valencies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2299-2311. doi: 10.3934/dcdsb.2012.17.2299

[17]

Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure & Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243

[18]

Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1

[19]

Igor Kossowski, Katarzyna Szymańska-Dębowska. Solutions to resonant boundary value problem with boundary conditions involving Riemann-Stieltjes integrals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 275-281. doi: 10.3934/dcdsb.2018019

[20]

T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems & Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]