July  2015, 35(7): 3253-3276. doi: 10.3934/dcds.2015.35.3253

Asymptotic behavior of solutions for competitive models with a free boundary

1. 

Department of Mathematics, Tongji University, Shanghai, 200092

Received  June 2014 Revised  November 2014 Published  January 2015

In this paper, we study a competitive model involving two species separated by a free boundary by virtue of strong competition. When the initial data has positive lower bounds near $\pm\infty$, we prove that the solution converges, as $t\rightarrow \infty$, to a traveling wave solution and the free boundary moves to infinity with a constant speed.
Citation: Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253
References:
[1]

S. B. Angenent, The zero set of a solution of a parabolic equation,, J. Reine Angew. Math., 390 (1988), 79. doi: 10.1515/crll.1988.390.79. Google Scholar

[2]

J. J. Cai, B. D. Lou and M. L. Zhou, Asymptotic behavior of solutions of a reaction diffusion equation with free boundary conditions,, J. Dynam. Differential Equations, 26 (2014), 1007. doi: 10.1007/s10884-014-9404-z. Google Scholar

[3]

C. H. Chang and C. C. Chen, Travelling wave solutions of a free boundary problem for a two-species competitive model,, Commun. Pure Appl. Anal., 12 (2013), 1065. doi: 10.3934/cpaa.2013.12.1065. Google Scholar

[4]

X. F. Chen, B. D. Lou, M. L. Zhou and T. Giletti, Long time behavior of solutions of a reaction-diffusion equation on unbounded intervals with Robin boundary conditions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, (2014). doi: 10.1016/j.anihpc.2014.08.004. Google Scholar

[5]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377. doi: 10.1137/090771089. Google Scholar

[6]

Y. H. Du, H. Matsuzawa and M. L. Zhou, Spreading speed determined by nonlinear free boundary problems in high dimensions,, J. Math. Pures Appl., (). Google Scholar

[7]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335. Google Scholar

[8]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Academic Press, (1968). Google Scholar

[9]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996). doi: 10.1142/3302. Google Scholar

[10]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151. doi: 10.1007/BF03167042. Google Scholar

[11]

M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology,, Hiroshima Math. J., 16 (1986), 477. Google Scholar

[12]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations,, Hiroshima Math. J., 17 (1987), 241. Google Scholar

[13]

J. Yang and B. D. Lou, Traveling wave solutions of competitive models with free boundaries,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 817. doi: 10.3934/dcdsb.2014.19.817. Google Scholar

show all references

References:
[1]

S. B. Angenent, The zero set of a solution of a parabolic equation,, J. Reine Angew. Math., 390 (1988), 79. doi: 10.1515/crll.1988.390.79. Google Scholar

[2]

J. J. Cai, B. D. Lou and M. L. Zhou, Asymptotic behavior of solutions of a reaction diffusion equation with free boundary conditions,, J. Dynam. Differential Equations, 26 (2014), 1007. doi: 10.1007/s10884-014-9404-z. Google Scholar

[3]

C. H. Chang and C. C. Chen, Travelling wave solutions of a free boundary problem for a two-species competitive model,, Commun. Pure Appl. Anal., 12 (2013), 1065. doi: 10.3934/cpaa.2013.12.1065. Google Scholar

[4]

X. F. Chen, B. D. Lou, M. L. Zhou and T. Giletti, Long time behavior of solutions of a reaction-diffusion equation on unbounded intervals with Robin boundary conditions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, (2014). doi: 10.1016/j.anihpc.2014.08.004. Google Scholar

[5]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377. doi: 10.1137/090771089. Google Scholar

[6]

Y. H. Du, H. Matsuzawa and M. L. Zhou, Spreading speed determined by nonlinear free boundary problems in high dimensions,, J. Math. Pures Appl., (). Google Scholar

[7]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335. Google Scholar

[8]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Academic Press, (1968). Google Scholar

[9]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996). doi: 10.1142/3302. Google Scholar

[10]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151. doi: 10.1007/BF03167042. Google Scholar

[11]

M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology,, Hiroshima Math. J., 16 (1986), 477. Google Scholar

[12]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations,, Hiroshima Math. J., 17 (1987), 241. Google Scholar

[13]

J. Yang and B. D. Lou, Traveling wave solutions of competitive models with free boundaries,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 817. doi: 10.3934/dcdsb.2014.19.817. Google Scholar

[1]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[2]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[3]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

[4]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[5]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[6]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[7]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[8]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[9]

Xin Li, Xingfu Zou. On a reaction-diffusion model for sterile insect release method with release on the boundary. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2509-2522. doi: 10.3934/dcdsb.2012.17.2509

[10]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[11]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[12]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[13]

Chueh-Hsin Chang, Chiun-Chuan Chen. Travelling wave solutions of a free boundary problem for a two-species competitive model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1065-1074. doi: 10.3934/cpaa.2013.12.1065

[14]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625

[15]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[16]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[17]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[18]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[19]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[20]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]