August  2015, 35(8): 3327-3342. doi: 10.3934/dcds.2015.35.3327

Existence and regularity of solutions in nonlinear wave equations

1. 

School of Mathematics, Georgia Institute of Technology, Atlanta, Ga. 30332

2. 

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, 75080, United States

Received  September 2014 Revised  October 2014 Published  February 2015

In this paper, we study the global existence and regularity of Hölder continuous solutions for a series of nonlinear partial differential equations describing nonlinear waves.
Citation: Geng Chen, Yannan Shen. Existence and regularity of solutions in nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3327-3342. doi: 10.3934/dcds.2015.35.3327
References:
[1]

A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation,, SIAM J. Math. Anal., 37 (2005), 996. doi: 10.1137/050623036. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation,, J. Math. Pures Appl. (9), 94 (2010), 68. doi: 10.1016/j.matpur.2010.02.005. Google Scholar

[4]

A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation,, Comm. Math. Phys., 266 (2006), 471. doi: 10.1007/s00220-006-0047-8. Google Scholar

[5]

A. Bressan, P. Zhang and Y. Zheng, Asymptotic variational wave equations,, Arch. Ration. Mech. Anal., 183 (2007), 163. doi: 10.1007/s00205-006-0014-8. Google Scholar

[6]

G. Chen, Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations,, J. Hyperbolic Differ. Equ., 8 (2011), 671. doi: 10.1142/S0219891611002536. Google Scholar

[7]

G. Chen, R. Pan and S. Zhu, Singularity formation for compressible Euler equations,, submitted, (). Google Scholar

[8]

G. Chen and R. Young, Smooth waves and gradient blowup for the inhomogeneous wave equations,, J. Differential Equations, 252 (2012), 2580. doi: 10.1016/j.jde.2011.09.004. Google Scholar

[9]

G. Chen, R. Young and Q. Zhang, Shock formation in the compressible Euler equations and related systems,, J. Hyperbolic Differ. Equ., 10 (2013), 149. doi: 10.1142/S0219891613500069. Google Scholar

[10]

G. Chen, P. Zhang and Y. Zheng, Energy conservative solutions to a nonlinear wave system of nematic liquid crystals,, Comm. Pure Appl. Anal., 12 (2013), 1445. doi: 10.3934/cpaa.2013.12.1445. Google Scholar

[11]

G. Chen and Y. Zheng, Existence and singularity to a wave system of nematic liquid crystals,, J. Math. Anal. Appl., 398 (2013), 170. doi: 10.1016/j.jmaa.2012.08.048. Google Scholar

[12]

C. M. Dafermos, Hyperbolic Conservations Laws in Continuum Physics, (third edition),, Springer-Verlag, (2010). doi: 10.1007/978-3-642-04048-1. Google Scholar

[13]

H. Holden and X. Raynaud, Global semigroup of conservative solutions of the nonlinear variational wave equation,, Arch. Ration. Mech. Anal., 201 (2011), 871. doi: 10.1007/s00205-011-0403-5. Google Scholar

[14]

R. Glassey, J. Hunter and Y. Zheng, Singularities of a variational wave equation,, J. Differential Equations, 129 (1996), 49. doi: 10.1006/jdeq.1996.0111. Google Scholar

[15]

R. Glassey, J. Hunter and Y. Zheng, Singularities and Oscillations in a Nonlinear Variational Wave Equation,, Singularities and Oscillations, 91 (1997), 37. doi: 10.1007/978-1-4612-1972-9_3. Google Scholar

[16]

J. K. Hunter and R. H. Saxton, Dynamics of director fields,, SIAM J. Appl. Math., 51 (1991), 1498. doi: 10.1137/0151075. Google Scholar

[17]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: I. global existence of weak solutions,, Arch. Rat. Mech. Anal., 129 (1995), 305. doi: 10.1007/BF00379259. Google Scholar

[18]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: II. the zero viscosity and dispersion limits,, Arch. Rat. Mech. Anal., 129 (1995), 355. doi: 10.1007/BF00379260. Google Scholar

[19]

P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Physics, 5 (1964), 611. doi: 10.1063/1.1704154. Google Scholar

[20]

P. Lax and J. Glimm, Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws,, Memoirs of the American Mathematical Society, 101 (1970). Google Scholar

[21]

H. Lindblad, Global solutions of nonlinear wave equations,, Comm. Pure Appl. Math., 45 (1992), 1063. doi: 10.1002/cpa.3160450902. Google Scholar

[22]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation,, Arch. Ration. Mech. Anal., 166 (2003), 303. doi: 10.1007/s00205-002-0232-7. Google Scholar

[23]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation with general data,, Ann. I. H. Poincaré, 22 (2005), 207. doi: 10.1016/j.anihpc.2004.04.001. Google Scholar

[24]

P. Zhang and Y. Zheng, Conservative solutions to a system of variational wave equations of nematic liquid crystals,, Arch. Ration. Mech. Anal., 195 (2010), 701. doi: 10.1007/s00205-009-0222-0. Google Scholar

[25]

P. Zhang and Y. Zheng, Energy conservative solutions to a one-dimensional full variational wave system,, Comm. Pure Appl. Math., 65 (2012), 683. doi: 10.1002/cpa.20380. Google Scholar

show all references

References:
[1]

A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation,, SIAM J. Math. Anal., 37 (2005), 996. doi: 10.1137/050623036. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation,, J. Math. Pures Appl. (9), 94 (2010), 68. doi: 10.1016/j.matpur.2010.02.005. Google Scholar

[4]

A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation,, Comm. Math. Phys., 266 (2006), 471. doi: 10.1007/s00220-006-0047-8. Google Scholar

[5]

A. Bressan, P. Zhang and Y. Zheng, Asymptotic variational wave equations,, Arch. Ration. Mech. Anal., 183 (2007), 163. doi: 10.1007/s00205-006-0014-8. Google Scholar

[6]

G. Chen, Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations,, J. Hyperbolic Differ. Equ., 8 (2011), 671. doi: 10.1142/S0219891611002536. Google Scholar

[7]

G. Chen, R. Pan and S. Zhu, Singularity formation for compressible Euler equations,, submitted, (). Google Scholar

[8]

G. Chen and R. Young, Smooth waves and gradient blowup for the inhomogeneous wave equations,, J. Differential Equations, 252 (2012), 2580. doi: 10.1016/j.jde.2011.09.004. Google Scholar

[9]

G. Chen, R. Young and Q. Zhang, Shock formation in the compressible Euler equations and related systems,, J. Hyperbolic Differ. Equ., 10 (2013), 149. doi: 10.1142/S0219891613500069. Google Scholar

[10]

G. Chen, P. Zhang and Y. Zheng, Energy conservative solutions to a nonlinear wave system of nematic liquid crystals,, Comm. Pure Appl. Anal., 12 (2013), 1445. doi: 10.3934/cpaa.2013.12.1445. Google Scholar

[11]

G. Chen and Y. Zheng, Existence and singularity to a wave system of nematic liquid crystals,, J. Math. Anal. Appl., 398 (2013), 170. doi: 10.1016/j.jmaa.2012.08.048. Google Scholar

[12]

C. M. Dafermos, Hyperbolic Conservations Laws in Continuum Physics, (third edition),, Springer-Verlag, (2010). doi: 10.1007/978-3-642-04048-1. Google Scholar

[13]

H. Holden and X. Raynaud, Global semigroup of conservative solutions of the nonlinear variational wave equation,, Arch. Ration. Mech. Anal., 201 (2011), 871. doi: 10.1007/s00205-011-0403-5. Google Scholar

[14]

R. Glassey, J. Hunter and Y. Zheng, Singularities of a variational wave equation,, J. Differential Equations, 129 (1996), 49. doi: 10.1006/jdeq.1996.0111. Google Scholar

[15]

R. Glassey, J. Hunter and Y. Zheng, Singularities and Oscillations in a Nonlinear Variational Wave Equation,, Singularities and Oscillations, 91 (1997), 37. doi: 10.1007/978-1-4612-1972-9_3. Google Scholar

[16]

J. K. Hunter and R. H. Saxton, Dynamics of director fields,, SIAM J. Appl. Math., 51 (1991), 1498. doi: 10.1137/0151075. Google Scholar

[17]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: I. global existence of weak solutions,, Arch. Rat. Mech. Anal., 129 (1995), 305. doi: 10.1007/BF00379259. Google Scholar

[18]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: II. the zero viscosity and dispersion limits,, Arch. Rat. Mech. Anal., 129 (1995), 355. doi: 10.1007/BF00379260. Google Scholar

[19]

P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Physics, 5 (1964), 611. doi: 10.1063/1.1704154. Google Scholar

[20]

P. Lax and J. Glimm, Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws,, Memoirs of the American Mathematical Society, 101 (1970). Google Scholar

[21]

H. Lindblad, Global solutions of nonlinear wave equations,, Comm. Pure Appl. Math., 45 (1992), 1063. doi: 10.1002/cpa.3160450902. Google Scholar

[22]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation,, Arch. Ration. Mech. Anal., 166 (2003), 303. doi: 10.1007/s00205-002-0232-7. Google Scholar

[23]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation with general data,, Ann. I. H. Poincaré, 22 (2005), 207. doi: 10.1016/j.anihpc.2004.04.001. Google Scholar

[24]

P. Zhang and Y. Zheng, Conservative solutions to a system of variational wave equations of nematic liquid crystals,, Arch. Ration. Mech. Anal., 195 (2010), 701. doi: 10.1007/s00205-009-0222-0. Google Scholar

[25]

P. Zhang and Y. Zheng, Energy conservative solutions to a one-dimensional full variational wave system,, Comm. Pure Appl. Math., 65 (2012), 683. doi: 10.1002/cpa.20380. Google Scholar

[1]

Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295

[2]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[3]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[4]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[5]

Soichiro Katayama. Global existence for systems of nonlinear wave and klein-gordon equations with compactly supported initial data. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1479-1497. doi: 10.3934/cpaa.2018071

[6]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[7]

Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549

[8]

Gaku Hoshino. Dissipative nonlinear schrödinger equations for large data in one space dimension. Communications on Pure & Applied Analysis, 2020, 19 (2) : 967-981. doi: 10.3934/cpaa.2020044

[9]

Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180

[10]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[11]

Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79

[12]

Jinpeng An. Hölder stability of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315

[13]

Hannes Meinlschmidt, Joachim Rehberg. Hölder-estimates for non-autonomous parabolic problems with rough data. Evolution Equations & Control Theory, 2016, 5 (1) : 147-184. doi: 10.3934/eect.2016.5.147

[14]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[15]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure & Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

[16]

Hiroshi Takeda. Global existence of solutions for higher order nonlinear damped wave equations. Conference Publications, 2011, 2011 (Special) : 1358-1367. doi: 10.3934/proc.2011.2011.1358

[17]

H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119

[18]

Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991

[19]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[20]

Carlos Lizama, Luz Roncal. Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1365-1403. doi: 10.3934/dcds.2018056

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]