August  2015, 35(8): 3327-3342. doi: 10.3934/dcds.2015.35.3327

Existence and regularity of solutions in nonlinear wave equations

1. 

School of Mathematics, Georgia Institute of Technology, Atlanta, Ga. 30332

2. 

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, 75080, United States

Received  September 2014 Revised  October 2014 Published  February 2015

In this paper, we study the global existence and regularity of Hölder continuous solutions for a series of nonlinear partial differential equations describing nonlinear waves.
Citation: Geng Chen, Yannan Shen. Existence and regularity of solutions in nonlinear wave equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3327-3342. doi: 10.3934/dcds.2015.35.3327
References:
[1]

A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation, SIAM J. Math. Anal., 37 (2005), 996-1026. doi: 10.1137/050623036.

[2]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z.

[3]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation, J. Math. Pures Appl. (9), 94 (2010), 68-92. doi: 10.1016/j.matpur.2010.02.005.

[4]

A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation, Comm. Math. Phys., 266 (2006), 471-497. doi: 10.1007/s00220-006-0047-8.

[5]

A. Bressan, P. Zhang and Y. Zheng, Asymptotic variational wave equations, Arch. Ration. Mech. Anal., 183 (2007), 163-185. doi: 10.1007/s00205-006-0014-8.

[6]

G. Chen, Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations, J. Hyperbolic Differ. Equ., 8 (2011), 671-690. doi: 10.1142/S0219891611002536.

[7]

G. Chen, R. Pan and S. Zhu, Singularity formation for compressible Euler equations, submitted, available at arXiv:1408.6775.

[8]

G. Chen and R. Young, Smooth waves and gradient blowup for the inhomogeneous wave equations, J. Differential Equations, 252 (2012), 2580-2595. doi: 10.1016/j.jde.2011.09.004.

[9]

G. Chen, R. Young and Q. Zhang, Shock formation in the compressible Euler equations and related systems, J. Hyperbolic Differ. Equ., 10 (2013), 149-172. doi: 10.1142/S0219891613500069.

[10]

G. Chen, P. Zhang and Y. Zheng, Energy conservative solutions to a nonlinear wave system of nematic liquid crystals, Comm. Pure Appl. Anal., 12 (2013), 1445-1468. doi: 10.3934/cpaa.2013.12.1445.

[11]

G. Chen and Y. Zheng, Existence and singularity to a wave system of nematic liquid crystals, J. Math. Anal. Appl., 398 (2013), 170-188. doi: 10.1016/j.jmaa.2012.08.048.

[12]

C. M. Dafermos, Hyperbolic Conservations Laws in Continuum Physics, (third edition), Springer-Verlag, Heidelberg, 2010. doi: 10.1007/978-3-642-04048-1.

[13]

H. Holden and X. Raynaud, Global semigroup of conservative solutions of the nonlinear variational wave equation, Arch. Ration. Mech. Anal., 201 (2011), 871-964. doi: 10.1007/s00205-011-0403-5.

[14]

R. Glassey, J. Hunter and Y. Zheng, Singularities of a variational wave equation, J. Differential Equations, 129 (1996), 49-78. doi: 10.1006/jdeq.1996.0111.

[15]

R. Glassey, J. Hunter and Y. Zheng, Singularities and Oscillations in a Nonlinear Variational Wave Equation, Singularities and Oscillations, The IMA Volumes in Mathematics and its Applications, 91 (1997), 37-60. doi: 10.1007/978-1-4612-1972-9_3.

[16]

J. K. Hunter and R. H. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521. doi: 10.1137/0151075.

[17]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: I. global existence of weak solutions, Arch. Rat. Mech. Anal., 129 (1995), 305-353. doi: 10.1007/BF00379259.

[18]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: II. the zero viscosity and dispersion limits, Arch. Rat. Mech. Anal., 129 (1995), 355-383. doi: 10.1007/BF00379260.

[19]

P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Physics, 5 (1964), 611-613. doi: 10.1063/1.1704154.

[20]

P. Lax and J. Glimm, Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws, Memoirs of the American Mathematical Society, 101, American Mathematical Society, Providence, R.I. 1970.

[21]

H. Lindblad, Global solutions of nonlinear wave equations, Comm. Pure Appl. Math., 45 (1992), 1063-1096. doi: 10.1002/cpa.3160450902.

[22]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation, Arch. Ration. Mech. Anal., 166 (2003), 303-319. doi: 10.1007/s00205-002-0232-7.

[23]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation with general data, Ann. I. H. Poincaré, 22 (2005), 207-226. doi: 10.1016/j.anihpc.2004.04.001.

[24]

P. Zhang and Y. Zheng, Conservative solutions to a system of variational wave equations of nematic liquid crystals, Arch. Ration. Mech. Anal., 195 (2010), 701-727. doi: 10.1007/s00205-009-0222-0.

[25]

P. Zhang and Y. Zheng, Energy conservative solutions to a one-dimensional full variational wave system, Comm. Pure Appl. Math., 65 (2012), 683-726. doi: 10.1002/cpa.20380.

show all references

References:
[1]

A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation, SIAM J. Math. Anal., 37 (2005), 996-1026. doi: 10.1137/050623036.

[2]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z.

[3]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation, J. Math. Pures Appl. (9), 94 (2010), 68-92. doi: 10.1016/j.matpur.2010.02.005.

[4]

A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation, Comm. Math. Phys., 266 (2006), 471-497. doi: 10.1007/s00220-006-0047-8.

[5]

A. Bressan, P. Zhang and Y. Zheng, Asymptotic variational wave equations, Arch. Ration. Mech. Anal., 183 (2007), 163-185. doi: 10.1007/s00205-006-0014-8.

[6]

G. Chen, Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations, J. Hyperbolic Differ. Equ., 8 (2011), 671-690. doi: 10.1142/S0219891611002536.

[7]

G. Chen, R. Pan and S. Zhu, Singularity formation for compressible Euler equations, submitted, available at arXiv:1408.6775.

[8]

G. Chen and R. Young, Smooth waves and gradient blowup for the inhomogeneous wave equations, J. Differential Equations, 252 (2012), 2580-2595. doi: 10.1016/j.jde.2011.09.004.

[9]

G. Chen, R. Young and Q. Zhang, Shock formation in the compressible Euler equations and related systems, J. Hyperbolic Differ. Equ., 10 (2013), 149-172. doi: 10.1142/S0219891613500069.

[10]

G. Chen, P. Zhang and Y. Zheng, Energy conservative solutions to a nonlinear wave system of nematic liquid crystals, Comm. Pure Appl. Anal., 12 (2013), 1445-1468. doi: 10.3934/cpaa.2013.12.1445.

[11]

G. Chen and Y. Zheng, Existence and singularity to a wave system of nematic liquid crystals, J. Math. Anal. Appl., 398 (2013), 170-188. doi: 10.1016/j.jmaa.2012.08.048.

[12]

C. M. Dafermos, Hyperbolic Conservations Laws in Continuum Physics, (third edition), Springer-Verlag, Heidelberg, 2010. doi: 10.1007/978-3-642-04048-1.

[13]

H. Holden and X. Raynaud, Global semigroup of conservative solutions of the nonlinear variational wave equation, Arch. Ration. Mech. Anal., 201 (2011), 871-964. doi: 10.1007/s00205-011-0403-5.

[14]

R. Glassey, J. Hunter and Y. Zheng, Singularities of a variational wave equation, J. Differential Equations, 129 (1996), 49-78. doi: 10.1006/jdeq.1996.0111.

[15]

R. Glassey, J. Hunter and Y. Zheng, Singularities and Oscillations in a Nonlinear Variational Wave Equation, Singularities and Oscillations, The IMA Volumes in Mathematics and its Applications, 91 (1997), 37-60. doi: 10.1007/978-1-4612-1972-9_3.

[16]

J. K. Hunter and R. H. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521. doi: 10.1137/0151075.

[17]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: I. global existence of weak solutions, Arch. Rat. Mech. Anal., 129 (1995), 305-353. doi: 10.1007/BF00379259.

[18]

J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation: II. the zero viscosity and dispersion limits, Arch. Rat. Mech. Anal., 129 (1995), 355-383. doi: 10.1007/BF00379260.

[19]

P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Physics, 5 (1964), 611-613. doi: 10.1063/1.1704154.

[20]

P. Lax and J. Glimm, Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws, Memoirs of the American Mathematical Society, 101, American Mathematical Society, Providence, R.I. 1970.

[21]

H. Lindblad, Global solutions of nonlinear wave equations, Comm. Pure Appl. Math., 45 (1992), 1063-1096. doi: 10.1002/cpa.3160450902.

[22]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation, Arch. Ration. Mech. Anal., 166 (2003), 303-319. doi: 10.1007/s00205-002-0232-7.

[23]

P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation with general data, Ann. I. H. Poincaré, 22 (2005), 207-226. doi: 10.1016/j.anihpc.2004.04.001.

[24]

P. Zhang and Y. Zheng, Conservative solutions to a system of variational wave equations of nematic liquid crystals, Arch. Ration. Mech. Anal., 195 (2010), 701-727. doi: 10.1007/s00205-009-0222-0.

[25]

P. Zhang and Y. Zheng, Energy conservative solutions to a one-dimensional full variational wave system, Comm. Pure Appl. Math., 65 (2012), 683-726. doi: 10.1002/cpa.20380.

[1]

Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295

[2]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[3]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[4]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[5]

Soichiro Katayama. Global existence for systems of nonlinear wave and klein-gordon equations with compactly supported initial data. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1479-1497. doi: 10.3934/cpaa.2018071

[6]

Dinh Nguyen Duy Hai. Hölder-Logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1715-1734. doi: 10.3934/cpaa.2022043

[7]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[8]

Arnulf Jentzen, Benno Kuckuck, Thomas Müller-Gronbach, Larisa Yaroslavtseva. Counterexamples to local Lipschitz and local Hölder continuity with respect to the initial values for additive noise driven stochastic differential equations with smooth drift coefficient functions with at most polynomially growing derivatives. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3707-3724. doi: 10.3934/dcdsb.2021203

[9]

Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial and Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549

[10]

Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180

[11]

Gaku Hoshino. Dissipative nonlinear schrödinger equations for large data in one space dimension. Communications on Pure and Applied Analysis, 2020, 19 (2) : 967-981. doi: 10.3934/cpaa.2020044

[12]

Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072

[13]

Guangying Lv, Hongjun Gao, Jinlong Wei, Jiang-Lun Wu. On the Campanato and Hölder regularity of local and nonlocal stochastic diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022119

[14]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure and Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[15]

Jordi-Lluís Figueras, Thomas Ohlson Timoudas. Sharp $ \frac12 $-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4519-4531. doi: 10.3934/dcds.2020189

[16]

Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79

[17]

Jinpeng An. Hölder stability of diffeomorphisms. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315

[18]

Hannes Meinlschmidt, Joachim Rehberg. Hölder-estimates for non-autonomous parabolic problems with rough data. Evolution Equations and Control Theory, 2016, 5 (1) : 147-184. doi: 10.3934/eect.2016.5.147

[19]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic and Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[20]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure and Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (273)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]