-
Previous Article
On a fractional harmonic replacement
- DCDS Home
- This Issue
-
Next Article
Existence and regularity of solutions in nonlinear wave equations
On weak interaction between a ground state and a trapping potential
1. | Department of Mathematics and Geosciences, University of Trieste, via Valerio 12/1 Trieste, 34127, Italy |
2. | Department of Mathematics and Informatics, Faculty of Science, Chiba University, Chiba 263-8522, Japan |
References:
[1] |
Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197-257. |
[2] |
Comm. Math. Physics, 305 (2011), 279-331.
doi: 10.1007/s00220-011-1265-2. |
[3] |
Trans. Amer. Math. Soc., 366 (2014), 2827-2888.
doi: 10.1090/S0002-9947-2014-05770-X. |
[4] |
J. Differential Equations, 256 (2014), 1395-1466.
doi: 10.1016/j.jde.2013.11.002. |
[5] |
S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential,, preprint, (). Google Scholar |
[6] |
Comm. Pure Appl. Math., 58 (2005), 1-29.
doi: 10.1002/cpa.20050. |
[7] |
Comm. Partial Differential Equations, 34 (2009), 1074-1113.
doi: 10.1080/03605300903076831. |
[8] |
Acta Math., 188 (2002), 163-262.
doi: 10.1007/BF02392683. |
[9] |
Jour. Funct. An., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[10] |
Int. Math. Res. Not., 66 (2004), 3559-3584.
doi: 10.1155/S1073792804132340. |
[11] |
Comm. Math. Physics, 274 (2007), 187-216.
doi: 10.1007/s00220-007-0261-z. |
[12] |
J. Nonlinear Sci., 17 (2007), 349-367.
doi: 10.1007/s00332-006-0807-9. |
[13] |
Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 287-317.
doi: 10.1017/S030821051000003X. |
[14] |
Duke Math. J., 133 (2006), 405-466.
doi: 10.1215/S0012-7094-06-13331-8. |
[15] |
Ann. Inst. H. Poinc. Anal. Non Lin., 28 (2011), 357-384.
doi: 10.1016/j.anihpc.2011.02.002. |
[16] |
Math. Res. Lett., 16 (2009), 477-486.
doi: 10.4310/MRL.2009.v16.n3.a8. |
[17] |
Comm. Partial Diff., 29 (2004), 1051-1095.
doi: 10.1081/PDE-200033754. |
[18] |
Comm. Pure Appl. Math., 58 (2005), 149-216.
doi: 10.1002/cpa.20066. |
[19] |
I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, preprint, (). Google Scholar |
[20] |
Comm. Pure Appl. Math., 39 (1986), 51-67.
doi: 10.1002/cpa.3160390103. |
show all references
References:
[1] |
Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197-257. |
[2] |
Comm. Math. Physics, 305 (2011), 279-331.
doi: 10.1007/s00220-011-1265-2. |
[3] |
Trans. Amer. Math. Soc., 366 (2014), 2827-2888.
doi: 10.1090/S0002-9947-2014-05770-X. |
[4] |
J. Differential Equations, 256 (2014), 1395-1466.
doi: 10.1016/j.jde.2013.11.002. |
[5] |
S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential,, preprint, (). Google Scholar |
[6] |
Comm. Pure Appl. Math., 58 (2005), 1-29.
doi: 10.1002/cpa.20050. |
[7] |
Comm. Partial Differential Equations, 34 (2009), 1074-1113.
doi: 10.1080/03605300903076831. |
[8] |
Acta Math., 188 (2002), 163-262.
doi: 10.1007/BF02392683. |
[9] |
Jour. Funct. An., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[10] |
Int. Math. Res. Not., 66 (2004), 3559-3584.
doi: 10.1155/S1073792804132340. |
[11] |
Comm. Math. Physics, 274 (2007), 187-216.
doi: 10.1007/s00220-007-0261-z. |
[12] |
J. Nonlinear Sci., 17 (2007), 349-367.
doi: 10.1007/s00332-006-0807-9. |
[13] |
Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 287-317.
doi: 10.1017/S030821051000003X. |
[14] |
Duke Math. J., 133 (2006), 405-466.
doi: 10.1215/S0012-7094-06-13331-8. |
[15] |
Ann. Inst. H. Poinc. Anal. Non Lin., 28 (2011), 357-384.
doi: 10.1016/j.anihpc.2011.02.002. |
[16] |
Math. Res. Lett., 16 (2009), 477-486.
doi: 10.4310/MRL.2009.v16.n3.a8. |
[17] |
Comm. Partial Diff., 29 (2004), 1051-1095.
doi: 10.1081/PDE-200033754. |
[18] |
Comm. Pure Appl. Math., 58 (2005), 149-216.
doi: 10.1002/cpa.20066. |
[19] |
I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, preprint, (). Google Scholar |
[20] |
Comm. Pure Appl. Math., 39 (1986), 51-67.
doi: 10.1002/cpa.3160390103. |
[1] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[2] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[3] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[4] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[5] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[6] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[7] |
Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021038 |
[8] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376 |
[9] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[10] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[11] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[12] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[13] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[14] |
Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064 |
[15] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[16] |
Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 |
[17] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[18] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
[19] |
Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022 |
[20] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021047 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]