August  2015, 35(8): 3343-3376. doi: 10.3934/dcds.2015.35.3343

On weak interaction between a ground state and a trapping potential

1. 

Department of Mathematics and Geosciences, University of Trieste, via Valerio 12/1 Trieste, 34127, Italy

2. 

Department of Mathematics and Informatics, Faculty of Science, Chiba University, Chiba 263-8522, Japan

Received  April 2014 Revised  December 2014 Published  February 2015

We continue our study initiated in [4] of the interaction of a ground state with a potential considering here a class of trapping potentials. We track the precise asymptotic behavior of the solution if the interaction is weak, either because the ground state moves away from the potential or is very fast.
Citation: Scipio Cuccagna, Masaya Maeda. On weak interaction between a ground state and a trapping potential. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3343-3376. doi: 10.3934/dcds.2015.35.3343
References:
[1]

Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197-257.  Google Scholar

[2]

Comm. Math. Physics, 305 (2011), 279-331. doi: 10.1007/s00220-011-1265-2.  Google Scholar

[3]

Trans. Amer. Math. Soc., 366 (2014), 2827-2888. doi: 10.1090/S0002-9947-2014-05770-X.  Google Scholar

[4]

J. Differential Equations, 256 (2014), 1395-1466. doi: 10.1016/j.jde.2013.11.002.  Google Scholar

[5]

S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential,, preprint, ().   Google Scholar

[6]

Comm. Pure Appl. Math., 58 (2005), 1-29. doi: 10.1002/cpa.20050.  Google Scholar

[7]

Comm. Partial Differential Equations, 34 (2009), 1074-1113. doi: 10.1080/03605300903076831.  Google Scholar

[8]

Acta Math., 188 (2002), 163-262. doi: 10.1007/BF02392683.  Google Scholar

[9]

Jour. Funct. An., 74 (1987), 160-197. doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[10]

Int. Math. Res. Not., 66 (2004), 3559-3584. doi: 10.1155/S1073792804132340.  Google Scholar

[11]

Comm. Math. Physics, 274 (2007), 187-216. doi: 10.1007/s00220-007-0261-z.  Google Scholar

[12]

J. Nonlinear Sci., 17 (2007), 349-367. doi: 10.1007/s00332-006-0807-9.  Google Scholar

[13]

Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 287-317. doi: 10.1017/S030821051000003X.  Google Scholar

[14]

Duke Math. J., 133 (2006), 405-466. doi: 10.1215/S0012-7094-06-13331-8.  Google Scholar

[15]

Ann. Inst. H. Poinc. Anal. Non Lin., 28 (2011), 357-384. doi: 10.1016/j.anihpc.2011.02.002.  Google Scholar

[16]

Math. Res. Lett., 16 (2009), 477-486. doi: 10.4310/MRL.2009.v16.n3.a8.  Google Scholar

[17]

Comm. Partial Diff., 29 (2004), 1051-1095. doi: 10.1081/PDE-200033754.  Google Scholar

[18]

Comm. Pure Appl. Math., 58 (2005), 149-216. doi: 10.1002/cpa.20066.  Google Scholar

[19]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, preprint, ().   Google Scholar

[20]

Comm. Pure Appl. Math., 39 (1986), 51-67. doi: 10.1002/cpa.3160390103.  Google Scholar

show all references

References:
[1]

Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197-257.  Google Scholar

[2]

Comm. Math. Physics, 305 (2011), 279-331. doi: 10.1007/s00220-011-1265-2.  Google Scholar

[3]

Trans. Amer. Math. Soc., 366 (2014), 2827-2888. doi: 10.1090/S0002-9947-2014-05770-X.  Google Scholar

[4]

J. Differential Equations, 256 (2014), 1395-1466. doi: 10.1016/j.jde.2013.11.002.  Google Scholar

[5]

S. Cuccagna and M. Maeda, On small energy stabilization in the NLS with a trapping potential,, preprint, ().   Google Scholar

[6]

Comm. Pure Appl. Math., 58 (2005), 1-29. doi: 10.1002/cpa.20050.  Google Scholar

[7]

Comm. Partial Differential Equations, 34 (2009), 1074-1113. doi: 10.1080/03605300903076831.  Google Scholar

[8]

Acta Math., 188 (2002), 163-262. doi: 10.1007/BF02392683.  Google Scholar

[9]

Jour. Funct. An., 74 (1987), 160-197. doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[10]

Int. Math. Res. Not., 66 (2004), 3559-3584. doi: 10.1155/S1073792804132340.  Google Scholar

[11]

Comm. Math. Physics, 274 (2007), 187-216. doi: 10.1007/s00220-007-0261-z.  Google Scholar

[12]

J. Nonlinear Sci., 17 (2007), 349-367. doi: 10.1007/s00332-006-0807-9.  Google Scholar

[13]

Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 287-317. doi: 10.1017/S030821051000003X.  Google Scholar

[14]

Duke Math. J., 133 (2006), 405-466. doi: 10.1215/S0012-7094-06-13331-8.  Google Scholar

[15]

Ann. Inst. H. Poinc. Anal. Non Lin., 28 (2011), 357-384. doi: 10.1016/j.anihpc.2011.02.002.  Google Scholar

[16]

Math. Res. Lett., 16 (2009), 477-486. doi: 10.4310/MRL.2009.v16.n3.a8.  Google Scholar

[17]

Comm. Partial Diff., 29 (2004), 1051-1095. doi: 10.1081/PDE-200033754.  Google Scholar

[18]

Comm. Pure Appl. Math., 58 (2005), 149-216. doi: 10.1002/cpa.20066.  Google Scholar

[19]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, preprint, ().   Google Scholar

[20]

Comm. Pure Appl. Math., 39 (1986), 51-67. doi: 10.1002/cpa.3160390103.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[2]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[5]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[6]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[7]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[8]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[9]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[12]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[13]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[14]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[15]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[16]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[17]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[18]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[19]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

[20]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]