August  2015, 35(8): 3377-3392. doi: 10.3934/dcds.2015.35.3377

On a fractional harmonic replacement

1. 

Maxwell Institute for Mathematical Sciences and School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom

2. 

Weierstraß Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Germany

Received  November 2014 Revised  November 2014 Published  February 2015

Given $s\in(0,1)$, we consider the problem of minimizing the fractional Gagliardo seminorm in $H^s$ with prescribed condition outside the ball and under the further constraint of attaining zero value in a given set $K$.
    We investigate how the energy changes in dependence of such set. In particular, under mild regularity conditions, we show that adding a set $A$ to $K$ increases the energy of at most the measure of $A$ (this may be seen as a perturbation result for small sets $A$).
    Also, we point out a monotonicity feature of the energy with respect to the prescribed sets and the boundary conditions.
Citation: Serena Dipierro, Enrico Valdinoci. On a fractional harmonic replacement. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3377-3392. doi: 10.3934/dcds.2015.35.3377
References:
[1]

I. Athanasopoulos, L. A. Caffarelli, C. Kenig and S. Salsa, An area-Dirichlet integral minimization problem,, Commun. Pure Appl. Math., 54 (2001), 479.  doi: 10.1002/1097-0312(200104)54:4<479::AID-CPA3>3.0.CO;2-2.  Google Scholar

[2]

L. Caffarelli, O. Savin and E. Valdinoci, Minimization of a fractional perimeter-Dirichlet integral functional,, Ann. Inst. H. Poincaré Anal. Non Linéaire, ().  doi: 10.1016/j.anihpc.2014.04.004.  Google Scholar

[3]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[4]

S. Dipierro, A. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals,, Comm. Partial Differential Equations, 39 (2014), 2351.  doi: 10.1080/03605302.2014.914536.  Google Scholar

[5]

J. Jost, Partial Differential Equations. 3rd Revised and Expanded ed,, Graduate Texts in Mathematics, (2013).  doi: 10.1007/978-1-4614-4809-9.  Google Scholar

[6]

Y. J. Park, Fractional Polya-Szegö inequality,, J. Chungcheong Math. Soc., 24 (2011), 267.   Google Scholar

[7]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,, J. Math. Pures Appl. (9), 101 (2014), 275.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[8]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation,, Publ. Mat., 58 (2014), 133.  doi: 10.5565/PUBLMAT_58114_06.  Google Scholar

[9]

E. Valdinoci, From the long jump random walk to the fractional Laplacian,, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33.   Google Scholar

show all references

References:
[1]

I. Athanasopoulos, L. A. Caffarelli, C. Kenig and S. Salsa, An area-Dirichlet integral minimization problem,, Commun. Pure Appl. Math., 54 (2001), 479.  doi: 10.1002/1097-0312(200104)54:4<479::AID-CPA3>3.0.CO;2-2.  Google Scholar

[2]

L. Caffarelli, O. Savin and E. Valdinoci, Minimization of a fractional perimeter-Dirichlet integral functional,, Ann. Inst. H. Poincaré Anal. Non Linéaire, ().  doi: 10.1016/j.anihpc.2014.04.004.  Google Scholar

[3]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[4]

S. Dipierro, A. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals,, Comm. Partial Differential Equations, 39 (2014), 2351.  doi: 10.1080/03605302.2014.914536.  Google Scholar

[5]

J. Jost, Partial Differential Equations. 3rd Revised and Expanded ed,, Graduate Texts in Mathematics, (2013).  doi: 10.1007/978-1-4614-4809-9.  Google Scholar

[6]

Y. J. Park, Fractional Polya-Szegö inequality,, J. Chungcheong Math. Soc., 24 (2011), 267.   Google Scholar

[7]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,, J. Math. Pures Appl. (9), 101 (2014), 275.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[8]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation,, Publ. Mat., 58 (2014), 133.  doi: 10.5565/PUBLMAT_58114_06.  Google Scholar

[9]

E. Valdinoci, From the long jump random walk to the fractional Laplacian,, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33.   Google Scholar

[1]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[2]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[3]

Anton Petrunin. Harmonic functions on Alexandrov spaces and their applications. Electronic Research Announcements, 2003, 9: 135-141.

[4]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[5]

Carsten Burstedde. On the numerical evaluation of fractional Sobolev norms. Communications on Pure & Applied Analysis, 2007, 6 (3) : 587-605. doi: 10.3934/cpaa.2007.6.587

[6]

Tomasz Komorowski, Stefano Olla, Marielle Simon. Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities. Kinetic & Related Models, 2018, 11 (3) : 615-645. doi: 10.3934/krm.2018026

[7]

Gershon Kresin, Vladimir Maz’ya. Optimal estimates for the gradient of harmonic functions in the multidimensional half-space. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 425-440. doi: 10.3934/dcds.2010.28.425

[8]

Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097

[9]

Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305

[10]

Yuri Latushkin, Valerian Yurov. Stability estimates for semigroups on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5203-5216. doi: 10.3934/dcds.2013.33.5203

[11]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[12]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[13]

Vincent Millot, Yannick Sire, Hui Yu. Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6195-6214. doi: 10.3934/dcds.2018266

[14]

Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467

[15]

Milena Stanislavova, Atanas Stefanov. Effective estimates of the higher Sobolev norms for the Kuramoto-Sivashinsky equation. Conference Publications, 2009, 2009 (Special) : 729-738. doi: 10.3934/proc.2009.2009.729

[16]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[17]

Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041

[18]

Annalisa Cesaroni, Matteo Novaga. Volume constrained minimizers of the fractional perimeter with a potential energy. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 715-727. doi: 10.3934/dcdss.2017036

[19]

Vy Khoi Le. On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 809-818. doi: 10.3934/dcdss.2012.5.809

[20]

Duchao Liu, Beibei Wang, Peihao Zhao. On the trace regularity results of Musielak-Orlicz-Sobolev spaces in a bounded domain. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1643-1659. doi: 10.3934/cpaa.2016018

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]