\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a fractional harmonic replacement

Abstract Related Papers Cited by
  • Given $s\in(0,1)$, we consider the problem of minimizing the fractional Gagliardo seminorm in $H^s$ with prescribed condition outside the ball and under the further constraint of attaining zero value in a given set $K$.
        We investigate how the energy changes in dependence of such set. In particular, under mild regularity conditions, we show that adding a set $A$ to $K$ increases the energy of at most the measure of $A$ (this may be seen as a perturbation result for small sets $A$).
        Also, we point out a monotonicity feature of the energy with respect to the prescribed sets and the boundary conditions.
    Mathematics Subject Classification: 31A05, 35R11, 46E35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. Athanasopoulos, L. A. Caffarelli, C. Kenig and S. Salsa, An area-Dirichlet integral minimization problem, Commun. Pure Appl. Math., 54 (2001), 479-499.doi: 10.1002/1097-0312(200104)54:4<479::AID-CPA3>3.0.CO;2-2.

    [2]

    L. Caffarelli, O. Savin and E. ValdinociMinimization of a fractional perimeter-Dirichlet integral functional, Ann. Inst. H. Poincaré Anal. Non Linéaire, doi:10.1016/j.anihpc.2014.04.004, available at http://www.sciencedirect.com/science/article/pii/S0294144914000389 doi: 10.1016/j.anihpc.2014.04.004.

    [3]

    E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004.

    [4]

    S. Dipierro, A. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals, Comm. Partial Differential Equations, 39 (2014), 2351-2387.doi: 10.1080/03605302.2014.914536.

    [5]

    J. Jost, Partial Differential Equations. 3rd Revised and Expanded ed, Graduate Texts in Mathematics, 214. Springer, New York, 2013. xiv+410 pp.doi: 10.1007/978-1-4614-4809-9.

    [6]

    Y. J. Park, Fractional Polya-Szegö inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271.

    [7]

    X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302.doi: 10.1016/j.matpur.2013.06.003.

    [8]

    R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154.doi: 10.5565/PUBLMAT_58114_06.

    [9]

    E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., S$\vec e$MA, 49 (2009), 33-44.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(157) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return