• Previous Article
    Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains
  • DCDS Home
  • This Issue
  • Next Article
    Emergence of phase-locked states for the Winfree model in a large coupling regime
August  2015, 35(8): 3437-3461. doi: 10.3934/dcds.2015.35.3437

Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows

1. 

Department of Mathematics, City University of Hong Kong, Hong Kong, China

2. 

School of Mathematical Sciences, Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Han Dan Road 220, 200433 Shanghai

Received  September 2014 Revised  November 2014 Published  February 2015

We consider the Cauchy problem for incompressible viscoelastic fluids in the whole space $\mathbb{R}^d$ ($d=2,3$). By introducing a new decomposition via Helmholtz's projections, we first provide an alternative proof on the existence of global smooth solutions near equilibrium. Then under additional assumptions that the initial data belong to $L^1$ and their Fourier modes do not degenerate at low frequencies, we obtain the optimal $L^2$ decay rates for the global smooth solutions and their spatial derivatives. At last, we establish the weak-strong uniqueness property in the class of finite energy weak solutions for the incompressible viscoelastic system.
Citation: Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437
References:
[1]

Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions,, Comm. Partial Differential Equations, 31 (2006), 1793.  doi: 10.1080/03605300600858960.  Google Scholar

[2]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations,, Invent. Math., 141 (2000), 579.  doi: 10.1007/s002220000078.  Google Scholar

[3]

Y. Du, C. Liu and Q.-T. Zhang, Blow-up criterion for compressible visco-elasticity equations in three dimensional space,, Comm. Math. Sci., 12 (2014), 473.  doi: 10.4310/CMS.2014.v12.n3.a4.  Google Scholar

[4]

A. C. Eringen, E. S. Suhubi, Elastodynamics. Vol. I. Finite motions,, Academic Press, (1974).   Google Scholar

[5]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[6]

X.-P. Hu and R. Hynd, A blowup criterion for ideal viscoelastic flow,, J. Math. Fluid Mech., 15 (2013), 431.  doi: 10.1007/s00021-012-0124-z.  Google Scholar

[7]

X.-P. Hu and F.-H. Lin, Global solution to two dimensional incompressible viscoelastic fluid with discontinuous data,, preprint, ().   Google Scholar

[8]

X.-P. Hu and D.-H. Wang, Local strong solution to the compressible viscoelastic flow with large data,, J. Differential Equations, 249 (2010), 1179.  doi: 10.1016/j.jde.2010.03.027.  Google Scholar

[9]

X.-P. Hu and D.-H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, J. Differential Equations, 250 (2011), 1200.  doi: 10.1016/j.jde.2010.10.017.  Google Scholar

[10]

X.-P. Hu and D.-H. Wang, Strong solutions to the three-dimensional compressible viscoelastic fluids,, J. Differential Equations, 252 (2012), 4027.  doi: 10.1016/j.jde.2011.11.021.  Google Scholar

[11]

X.-P. Hu and G.-C. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows,, SIAM J. Math. Anal., 45 (2013), 2815.  doi: 10.1137/120892350.  Google Scholar

[12]

R. Kajikiya and T. Miyakawa, On $L^2$ decay of weak solutions of the Navier-Stokes Equations in $R^n$,, Math. Z., 192 (1986), 135.  doi: 10.1007/BF01162027.  Google Scholar

[13]

T. Kato, Strong $L^p$ solutions of Navier-Stokes equation in $R^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[14]

H. Kozono and H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations,, Analysis, 16 (1996), 255.  doi: 10.1524/anly.1996.16.3.255.  Google Scholar

[15]

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbbR^3$,, J. Differential Equations, 184 (2002), 587.  doi: 10.1006/jdeq.2002.4158.  Google Scholar

[16]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$,, Comm. Math. Phys., 200 (1999), 621.  doi: 10.1007/s002200050543.  Google Scholar

[17]

R.-G. Larson, The Structure and Rheology of Complex Fluids,, Oxford University Press, (1995).   Google Scholar

[18]

Z. Lei, On 2D viscoelasticity with small strain,, Arch. Ration. Mech. Anal., 198 (2010), 13.  doi: 10.1007/s00205-010-0346-2.  Google Scholar

[19]

Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain,, Commun. Math. Sci., 5 (2007), 595.  doi: 10.4310/CMS.2007.v5.n3.a5.  Google Scholar

[20]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Ration. Mech. Anal., 188 (2008), 371.  doi: 10.1007/s00205-007-0089-x.  Google Scholar

[21]

Z. Lei and Y. Zhou, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit,, SIAM J. Math. Anal., 37 (2005), 797.  doi: 10.1137/040618813.  Google Scholar

[22]

H.-L. Li, A. Matsumura and G.-J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^3$,, Arch. Ration. Mech. Anal., 196 (2010), 681.  doi: 10.1007/s00205-009-0255-4.  Google Scholar

[23]

H.-L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $\mathbbR^3$,, Math. Methods Appl. Sci., 34 (2011), 670.  doi: 10.1002/mma.1391.  Google Scholar

[24]

F.-H. Lin, Some analytical issues for elastic complex fluids,, Comm. Pure Appl. Math., 65 (2012), 893.  doi: 10.1002/cpa.21402.  Google Scholar

[25]

F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Comm. Pure Appl. Math., 58 (2005), 1437.  doi: 10.1002/cpa.20074.  Google Scholar

[26]

F.-H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Comm. Pure Appl. Math., 61 (2008), 539.  doi: 10.1002/cpa.20219.  Google Scholar

[27]

P.-L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows,, Chin. Ann. Math. Ser. B, 21 (2000), 131.  doi: 10.1142/S0252959900000170.  Google Scholar

[28]

C. Liu and N.-J. Walkington, An Eulerian description of fluids containing visco-elastic particles,, Arch. Ration. Mech. Anal., 159 (2001), 229.  doi: 10.1007/s002050100158.  Google Scholar

[29]

G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173.  doi: 10.1007/BF02410664.  Google Scholar

[30]

J.-Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluids system,, Nonlinear Anal., 72 (2010), 3222.  doi: 10.1016/j.na.2009.12.022.  Google Scholar

[31]

J.-Z. Qian, Initial boundary value problems for the compressible viscoelastic fluid,, J. Differential Equations, 250 (2011), 848.  doi: 10.1016/j.jde.2010.07.026.  Google Scholar

[32]

J.-Z. Qian and Z.-F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium,, Arch. Ration. Mech. Anal., 198 (2010), 835.  doi: 10.1007/s00205-010-0351-5.  Google Scholar

[33]

M. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 88 (1985), 209.  doi: 10.1007/BF00752111.  Google Scholar

[34]

M. Schonbek, Large time behavior of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733.  doi: 10.1080/03605308608820443.  Google Scholar

[35]

J. Serrin, On the interior regularity of weak solutions of Navier-Stokes equations,, Arch. Ration. Mech. Anal., 9 (1962), 187.   Google Scholar

[36]

Z. Tan and G.-C. Wu, Large time behavior of solutions for compressible Euler equations with damping in $\mathbbR^3$,, J. Differential Equations, 252 (2012), 1546.  doi: 10.1016/j.jde.2011.09.003.  Google Scholar

[37]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Studies in Mathematics and its Applications, (1977).   Google Scholar

[38]

T. Zhang and D.-Y. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p$ framework,, SIAM J. Math. Anal., 44 (2012), 2266.  doi: 10.1137/110851742.  Google Scholar

[39]

S. Zheng, Nonlinear Evolution Equations,, Pitman series Monographs and Survey in Pure and Applied Mathematics, 133 (2004).  doi: 10.1201/9780203492222.  Google Scholar

show all references

References:
[1]

Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions,, Comm. Partial Differential Equations, 31 (2006), 1793.  doi: 10.1080/03605300600858960.  Google Scholar

[2]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations,, Invent. Math., 141 (2000), 579.  doi: 10.1007/s002220000078.  Google Scholar

[3]

Y. Du, C. Liu and Q.-T. Zhang, Blow-up criterion for compressible visco-elasticity equations in three dimensional space,, Comm. Math. Sci., 12 (2014), 473.  doi: 10.4310/CMS.2014.v12.n3.a4.  Google Scholar

[4]

A. C. Eringen, E. S. Suhubi, Elastodynamics. Vol. I. Finite motions,, Academic Press, (1974).   Google Scholar

[5]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[6]

X.-P. Hu and R. Hynd, A blowup criterion for ideal viscoelastic flow,, J. Math. Fluid Mech., 15 (2013), 431.  doi: 10.1007/s00021-012-0124-z.  Google Scholar

[7]

X.-P. Hu and F.-H. Lin, Global solution to two dimensional incompressible viscoelastic fluid with discontinuous data,, preprint, ().   Google Scholar

[8]

X.-P. Hu and D.-H. Wang, Local strong solution to the compressible viscoelastic flow with large data,, J. Differential Equations, 249 (2010), 1179.  doi: 10.1016/j.jde.2010.03.027.  Google Scholar

[9]

X.-P. Hu and D.-H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, J. Differential Equations, 250 (2011), 1200.  doi: 10.1016/j.jde.2010.10.017.  Google Scholar

[10]

X.-P. Hu and D.-H. Wang, Strong solutions to the three-dimensional compressible viscoelastic fluids,, J. Differential Equations, 252 (2012), 4027.  doi: 10.1016/j.jde.2011.11.021.  Google Scholar

[11]

X.-P. Hu and G.-C. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows,, SIAM J. Math. Anal., 45 (2013), 2815.  doi: 10.1137/120892350.  Google Scholar

[12]

R. Kajikiya and T. Miyakawa, On $L^2$ decay of weak solutions of the Navier-Stokes Equations in $R^n$,, Math. Z., 192 (1986), 135.  doi: 10.1007/BF01162027.  Google Scholar

[13]

T. Kato, Strong $L^p$ solutions of Navier-Stokes equation in $R^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[14]

H. Kozono and H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations,, Analysis, 16 (1996), 255.  doi: 10.1524/anly.1996.16.3.255.  Google Scholar

[15]

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbbR^3$,, J. Differential Equations, 184 (2002), 587.  doi: 10.1006/jdeq.2002.4158.  Google Scholar

[16]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$,, Comm. Math. Phys., 200 (1999), 621.  doi: 10.1007/s002200050543.  Google Scholar

[17]

R.-G. Larson, The Structure and Rheology of Complex Fluids,, Oxford University Press, (1995).   Google Scholar

[18]

Z. Lei, On 2D viscoelasticity with small strain,, Arch. Ration. Mech. Anal., 198 (2010), 13.  doi: 10.1007/s00205-010-0346-2.  Google Scholar

[19]

Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain,, Commun. Math. Sci., 5 (2007), 595.  doi: 10.4310/CMS.2007.v5.n3.a5.  Google Scholar

[20]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Ration. Mech. Anal., 188 (2008), 371.  doi: 10.1007/s00205-007-0089-x.  Google Scholar

[21]

Z. Lei and Y. Zhou, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit,, SIAM J. Math. Anal., 37 (2005), 797.  doi: 10.1137/040618813.  Google Scholar

[22]

H.-L. Li, A. Matsumura and G.-J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^3$,, Arch. Ration. Mech. Anal., 196 (2010), 681.  doi: 10.1007/s00205-009-0255-4.  Google Scholar

[23]

H.-L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $\mathbbR^3$,, Math. Methods Appl. Sci., 34 (2011), 670.  doi: 10.1002/mma.1391.  Google Scholar

[24]

F.-H. Lin, Some analytical issues for elastic complex fluids,, Comm. Pure Appl. Math., 65 (2012), 893.  doi: 10.1002/cpa.21402.  Google Scholar

[25]

F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Comm. Pure Appl. Math., 58 (2005), 1437.  doi: 10.1002/cpa.20074.  Google Scholar

[26]

F.-H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Comm. Pure Appl. Math., 61 (2008), 539.  doi: 10.1002/cpa.20219.  Google Scholar

[27]

P.-L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows,, Chin. Ann. Math. Ser. B, 21 (2000), 131.  doi: 10.1142/S0252959900000170.  Google Scholar

[28]

C. Liu and N.-J. Walkington, An Eulerian description of fluids containing visco-elastic particles,, Arch. Ration. Mech. Anal., 159 (2001), 229.  doi: 10.1007/s002050100158.  Google Scholar

[29]

G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173.  doi: 10.1007/BF02410664.  Google Scholar

[30]

J.-Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluids system,, Nonlinear Anal., 72 (2010), 3222.  doi: 10.1016/j.na.2009.12.022.  Google Scholar

[31]

J.-Z. Qian, Initial boundary value problems for the compressible viscoelastic fluid,, J. Differential Equations, 250 (2011), 848.  doi: 10.1016/j.jde.2010.07.026.  Google Scholar

[32]

J.-Z. Qian and Z.-F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium,, Arch. Ration. Mech. Anal., 198 (2010), 835.  doi: 10.1007/s00205-010-0351-5.  Google Scholar

[33]

M. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 88 (1985), 209.  doi: 10.1007/BF00752111.  Google Scholar

[34]

M. Schonbek, Large time behavior of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733.  doi: 10.1080/03605308608820443.  Google Scholar

[35]

J. Serrin, On the interior regularity of weak solutions of Navier-Stokes equations,, Arch. Ration. Mech. Anal., 9 (1962), 187.   Google Scholar

[36]

Z. Tan and G.-C. Wu, Large time behavior of solutions for compressible Euler equations with damping in $\mathbbR^3$,, J. Differential Equations, 252 (2012), 1546.  doi: 10.1016/j.jde.2011.09.003.  Google Scholar

[37]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Studies in Mathematics and its Applications, (1977).   Google Scholar

[38]

T. Zhang and D.-Y. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p$ framework,, SIAM J. Math. Anal., 44 (2012), 2266.  doi: 10.1137/110851742.  Google Scholar

[39]

S. Zheng, Nonlinear Evolution Equations,, Pitman series Monographs and Survey in Pure and Applied Mathematics, 133 (2004).  doi: 10.1201/9780203492222.  Google Scholar

[1]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[2]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021005

[3]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[6]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[7]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[8]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[9]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[10]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[11]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[13]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[14]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[15]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[16]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[17]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[18]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[19]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[20]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]