-
Previous Article
Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source
- DCDS Home
- This Issue
-
Next Article
Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains
On the partitions with Sturmian-like refinements
1. | Institute of Information Theory and Automation, The Academy of Sciences of the Czech Republic, Prague 8, CZ-18208 |
2. | Faculty of Information Technology, Czech Technical University in Prague, Prague 6, CZ-16000, Czech Republic |
References:
[1] |
P. Alessandri, Codages de Rotations et Basses Complexités, PhD thesis, Université d'Aix-Marseille II, 1996. |
[2] |
P. Alessandri and V. Berthé, Three distance theorems and combinatorics on words, Enseign. Math. (2), 44 (1998), 103-132. |
[3] |
P. Arnoux, S. Ferenczi and P. Hubert, Trajectories of rotations, Acta Arith., 87 (1999), 209-217. |
[4] |
J. Cassaigne and J. Karhumäki, Toeplitz words, generalized periodicity and periodically iterated morphisms, Eur. J. Comb., 18 (1997), 497-510.
doi: 10.1006/eujc.1996.0110. |
[5] |
P. Dartnell, F. Durand and A. Maass, Orbit equivalence and Kakutani equivalence with Sturmian subshifts, Studia Math., 142 (2000), 25-45. |
[6] |
G. Didier, Combinatoire des codages de rotations, Acta Arith., 85 (1998), 157-177. |
[7] |
F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergod. Theor. Dyn. Syst., 20 (2000), 1061-1078.
doi: 10.1017/S0143385700000584. |
[8] |
P. N. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag Berlin Heidelberg, 2002.
doi: 10.1007/b13861. |
[9] |
P. Kůrka, Topological and Symbolic Dynamics, Société Mathématique de France, Marseilles, 2003. |
[10] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511626302. |
[11] |
M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., 62 (1940), 1-42.
doi: 10.2307/2371431. |
[12] |
V. T. Sós, On the distribution mod 1 of the sequences $n\alpha$, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., 1 (1958), 127-134. |
show all references
References:
[1] |
P. Alessandri, Codages de Rotations et Basses Complexités, PhD thesis, Université d'Aix-Marseille II, 1996. |
[2] |
P. Alessandri and V. Berthé, Three distance theorems and combinatorics on words, Enseign. Math. (2), 44 (1998), 103-132. |
[3] |
P. Arnoux, S. Ferenczi and P. Hubert, Trajectories of rotations, Acta Arith., 87 (1999), 209-217. |
[4] |
J. Cassaigne and J. Karhumäki, Toeplitz words, generalized periodicity and periodically iterated morphisms, Eur. J. Comb., 18 (1997), 497-510.
doi: 10.1006/eujc.1996.0110. |
[5] |
P. Dartnell, F. Durand and A. Maass, Orbit equivalence and Kakutani equivalence with Sturmian subshifts, Studia Math., 142 (2000), 25-45. |
[6] |
G. Didier, Combinatoire des codages de rotations, Acta Arith., 85 (1998), 157-177. |
[7] |
F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergod. Theor. Dyn. Syst., 20 (2000), 1061-1078.
doi: 10.1017/S0143385700000584. |
[8] |
P. N. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag Berlin Heidelberg, 2002.
doi: 10.1007/b13861. |
[9] |
P. Kůrka, Topological and Symbolic Dynamics, Société Mathématique de France, Marseilles, 2003. |
[10] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511626302. |
[11] |
M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., 62 (1940), 1-42.
doi: 10.2307/2371431. |
[12] |
V. T. Sós, On the distribution mod 1 of the sequences $n\alpha$, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., 1 (1958), 127-134. |
[1] |
A. Crannell. A chaotic, non-mixing subshift. Conference Publications, 1998, 1998 (Special) : 195-202. doi: 10.3934/proc.1998.1998.195 |
[2] |
Jeanette Olli. Endomorphisms of Sturmian systems and the discrete chair substitution tiling system. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4173-4186. doi: 10.3934/dcds.2013.33.4173 |
[3] |
Silvère Gangloff, Benjamin Hellouin de Menibus. Effect of quantified irreducibility on the computability of subshift entropy. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1975-2000. doi: 10.3934/dcds.2019083 |
[4] |
Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012 |
[5] |
Jon Chaika, David Constantine. A quantitative shrinking target result on Sturmian sequences for rotations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5189-5204. doi: 10.3934/dcds.2018229 |
[6] |
David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287 |
[7] |
Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684 |
[8] |
Joshua P. Bowman, Slade Sanderson. Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces. Journal of Modern Dynamics, 2020, 16: 109-153. doi: 10.3934/jmd.2020005 |
[9] |
Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315 |
[10] |
Gokhan Calis, O. Ozan Koyluoglu. Architecture-aware coding for distributed storage: Repairable block failure resilient codes. Advances in Mathematics of Communications, 2018, 12 (3) : 465-503. doi: 10.3934/amc.2018028 |
[11] |
Stefano Galatolo. Global and local complexity in weakly chaotic dynamical systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1607-1624. doi: 10.3934/dcds.2003.9.1607 |
[12] |
Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759 |
[13] |
Li Chen, Yongyan Sun, Xiaowei Shao, Junli Chen, Dexin Zhang. Prescribed-time time-varying sliding mode based integrated translation and rotation control for spacecraft formation flying. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022131 |
[14] |
Wei Wan, Haiyang Huang, Jun Liu. Local block operators and TV regularization based image inpainting. Inverse Problems and Imaging, 2018, 12 (6) : 1389-1410. doi: 10.3934/ipi.2018058 |
[15] |
Ayla Sayli, Ayse Oncu Sarihan. Statistical query-based rule derivation system by backward elimination algorithm. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1341-1356. doi: 10.3934/dcdss.2015.8.1341 |
[16] |
Natalie Priebe Frank, Lorenzo Sadun. Topology of some tiling spaces without finite local complexity. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 847-865. doi: 10.3934/dcds.2009.23.847 |
[17] |
Jeong-Yup Lee, Boris Solomyak. On substitution tilings and Delone sets without finite local complexity. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3149-3177. doi: 10.3934/dcds.2019130 |
[18] |
Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial and Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007 |
[19] |
Runzhang Xu, Yanbing Yang. Low regularity of solutions to the Rotation-Camassa-Holm type equation with the Coriolis effect. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6507-6527. doi: 10.3934/dcds.2020288 |
[20] |
Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42. |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]