Citation: |
[1] |
P. Alessandri, Codages de Rotations et Basses Complexités, PhD thesis, Université d'Aix-Marseille II, 1996. |
[2] |
P. Alessandri and V. Berthé, Three distance theorems and combinatorics on words, Enseign. Math. (2), 44 (1998), 103-132. |
[3] |
P. Arnoux, S. Ferenczi and P. Hubert, Trajectories of rotations, Acta Arith., 87 (1999), 209-217. |
[4] |
J. Cassaigne and J. Karhumäki, Toeplitz words, generalized periodicity and periodically iterated morphisms, Eur. J. Comb., 18 (1997), 497-510.doi: 10.1006/eujc.1996.0110. |
[5] |
P. Dartnell, F. Durand and A. Maass, Orbit equivalence and Kakutani equivalence with Sturmian subshifts, Studia Math., 142 (2000), 25-45. |
[6] |
G. Didier, Combinatoire des codages de rotations, Acta Arith., 85 (1998), 157-177. |
[7] |
F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergod. Theor. Dyn. Syst., 20 (2000), 1061-1078.doi: 10.1017/S0143385700000584. |
[8] |
P. N. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag Berlin Heidelberg, 2002.doi: 10.1007/b13861. |
[9] |
P. Kůrka, Topological and Symbolic Dynamics, Société Mathématique de France, Marseilles, 2003. |
[10] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.doi: 10.1017/CBO9780511626302. |
[11] |
M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., 62 (1940), 1-42.doi: 10.2307/2371431. |
[12] |
V. T. Sós, On the distribution mod 1 of the sequences $n\alpha$, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., 1 (1958), 127-134. |