-
Previous Article
Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation
- DCDS Home
- This Issue
-
Next Article
On the partitions with Sturmian-like refinements
Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source
1. | School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731 |
References:
[1] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.
doi: 10.1080/03605307908820113. |
[2] |
K. Baghaei and M. Hesaaraki, Global existence and boundedness of classical solutions for a chemotaxis model with logistic source,, C. R. Acad. Sci. Paris, 351 (2013), 585.
doi: 10.1016/j.crma.2013.07.027. |
[3] |
J. Burczak, T. Cieslak and C. Morales-Rodrigo, Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller-Segel system,, Nonlinear Anal., 75 (2012), 5215.
doi: 10.1016/j.na.2012.04.038. |
[4] |
X. Cao and S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source,, Math. Methods Appl. Sci., 37 (2014), 2326.
doi: 10.1002/mma.2992. |
[5] |
T. Cieslak, Quasilinear nonuniformly parabolic system modelling chemotaxis,, J. Math. Anal. Appl., 326 (2007), 1410.
doi: 10.1016/j.jmaa.2006.03.080. |
[6] |
T. Cieslak and P. Laurencot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. I. H. Poincaré AN, 27 (2010), 437.
doi: 10.1016/j.anihpc.2009.11.016. |
[7] |
T. Cieslak and C. Stinner, Finite-time blow up and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832.
doi: 10.1016/j.jde.2012.01.045. |
[8] |
T. Cieslak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, Acta Appl. Math., 129 (2014), 135.
doi: 10.1007/s10440-013-9832-5. |
[9] |
T. Cieslak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057.
doi: 10.1088/0951-7715/21/5/009. |
[10] |
A. Friedman, Partial Differential Equations,, Holt, (1969).
|
[11] |
H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations,, in Harmonic Analysis and Nonlinear Partial Differential Equations, 26 (2011), 159.
|
[12] |
D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations,, European Mathematical Society, (2008).
|
[13] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633.
|
[14] |
T. Hillen and K. J. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding,, Adv. Appl. Math., 26 (2001), 280.
doi: 10.1006/aama.2001.0721. |
[15] |
T. Hillen and K. Painter, Volume-filling and quorum-sensing in models for chemosensitive movement,, Can. Appl. Math. Q., 10 (2002), 501.
|
[16] |
T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.
doi: 10.1007/s00285-008-0201-3. |
[17] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52.
doi: 10.1016/j.jde.2004.10.022. |
[18] |
D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions,, European J. Appl. Math., 12 (2001), 159.
doi: 10.1017/S0956792501004363. |
[19] |
S. Ishida, T. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, Math. Methods Appl. Sci., 36 (2013), 745.
doi: 10.1002/mma.2622. |
[20] |
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993.
doi: 10.1016/j.jde.2014.01.028. |
[21] |
W. Jager and S. Luckhaus, On explosions of solutions to a system of partial differential equations modeling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.
doi: 10.1090/S0002-9947-1992-1046835-6. |
[22] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.
doi: 10.1016/0022-5193(70)90092-5. |
[23] |
N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system,, Ann. I. H. Poincaré AN, 31 (2014), 851.
doi: 10.1016/j.anihpc.2013.07.007. |
[24] |
C. Mu, L. Wang, P. Zheng and Q. Zhang, Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system,, Nonlinear Anal.-Real World Appl., 14 (2013), 1634.
doi: 10.1016/j.nonrwa.2012.10.022. |
[25] |
T. Nagai, Blow-up of radially symmetric solutions of a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581.
|
[26] |
E. Nakaguchi and K. Osaki, Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation,, Nonlinear Anal., 74 (2011), 286.
doi: 10.1016/j.na.2010.08.044. |
[27] |
V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology,, J. Theoret. Biol., 42 (1973), 63.
doi: 10.1016/0022-5193(73)90149-5. |
[28] |
L. Nirenberg, An extended interpolation inequality,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 733.
|
[29] |
T. Senba, Blowup behavior of radial solutions to Jager-Luckhaus system in high dimensional domains,, Funkcialaj Ekvacioj, 48 (2005), 247.
doi: 10.1619/fesi.48.247. |
[30] |
T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time,, Methods Appl. Anal., 8 (2001), 349.
|
[31] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.
doi: 10.1016/j.jde.2011.08.019. |
[32] |
Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520.
doi: 10.1016/j.jde.2011.07.010. |
[33] |
Y. Tao and Z.A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,, Math. Models Methods Appl. Sci., 23 (2013), 1.
doi: 10.1142/S0218202512500443. |
[34] |
J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849.
doi: 10.1080/03605300701319003. |
[35] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, 68 (1997). Google Scholar |
[36] |
L. Wang, Y. Li and C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source,, Discrete and Continuous Dynamical Systems, 34 (2014), 789.
doi: 10.3934/dcds.2014.34.789. |
[37] |
L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source,, J. Differential Equations, 256 (2014), 1847.
doi: 10.1016/j.jde.2013.12.007. |
[38] |
Z. A. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model,, Chaos, 17 (2007).
doi: 10.1063/1.2766864. |
[39] |
Z. A. Wang, On chemotaxis models with cell population interactions,, Math. Model. Nat. Phenom., 5 (2010), 173.
doi: 10.1051/mmnp/20105311. |
[40] |
Z. A. Wang, M. Winkler and D. Wrzosek, Singularity formation in chemotaxis systems with volume-filling effect,, Nonlinearity, 24 (2011), 3279.
doi: 10.1088/0951-7715/24/12/001. |
[41] |
Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion,, SIAM J. Math. Anal., 44 (2012), 3502.
doi: 10.1137/110853972. |
[42] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,, Comm. Partial Differential Equations, 35 (2010), 1516.
doi: 10.1080/03605300903473426. |
[43] |
M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties,, J. Math. Anal. Appl., 348 (2008), 708.
doi: 10.1016/j.jmaa.2008.07.071. |
[44] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748.
doi: 10.1016/j.matpur.2013.01.020. |
[45] |
M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12.
doi: 10.1002/mma.1146. |
[46] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.
doi: 10.1016/j.jde.2010.02.008. |
[47] |
M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044.
doi: 10.1016/j.na.2009.07.045. |
[48] |
D. Wrzosek, Global attractor for a chemotaxis model with prevention of over-crowding,, Nonlinear Anal., 59 (2004), 1293.
doi: 10.1016/j.na.2004.08.015. |
show all references
References:
[1] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827.
doi: 10.1080/03605307908820113. |
[2] |
K. Baghaei and M. Hesaaraki, Global existence and boundedness of classical solutions for a chemotaxis model with logistic source,, C. R. Acad. Sci. Paris, 351 (2013), 585.
doi: 10.1016/j.crma.2013.07.027. |
[3] |
J. Burczak, T. Cieslak and C. Morales-Rodrigo, Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller-Segel system,, Nonlinear Anal., 75 (2012), 5215.
doi: 10.1016/j.na.2012.04.038. |
[4] |
X. Cao and S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source,, Math. Methods Appl. Sci., 37 (2014), 2326.
doi: 10.1002/mma.2992. |
[5] |
T. Cieslak, Quasilinear nonuniformly parabolic system modelling chemotaxis,, J. Math. Anal. Appl., 326 (2007), 1410.
doi: 10.1016/j.jmaa.2006.03.080. |
[6] |
T. Cieslak and P. Laurencot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. I. H. Poincaré AN, 27 (2010), 437.
doi: 10.1016/j.anihpc.2009.11.016. |
[7] |
T. Cieslak and C. Stinner, Finite-time blow up and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832.
doi: 10.1016/j.jde.2012.01.045. |
[8] |
T. Cieslak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, Acta Appl. Math., 129 (2014), 135.
doi: 10.1007/s10440-013-9832-5. |
[9] |
T. Cieslak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057.
doi: 10.1088/0951-7715/21/5/009. |
[10] |
A. Friedman, Partial Differential Equations,, Holt, (1969).
|
[11] |
H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations,, in Harmonic Analysis and Nonlinear Partial Differential Equations, 26 (2011), 159.
|
[12] |
D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations,, European Mathematical Society, (2008).
|
[13] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633.
|
[14] |
T. Hillen and K. J. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding,, Adv. Appl. Math., 26 (2001), 280.
doi: 10.1006/aama.2001.0721. |
[15] |
T. Hillen and K. Painter, Volume-filling and quorum-sensing in models for chemosensitive movement,, Can. Appl. Math. Q., 10 (2002), 501.
|
[16] |
T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.
doi: 10.1007/s00285-008-0201-3. |
[17] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52.
doi: 10.1016/j.jde.2004.10.022. |
[18] |
D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions,, European J. Appl. Math., 12 (2001), 159.
doi: 10.1017/S0956792501004363. |
[19] |
S. Ishida, T. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, Math. Methods Appl. Sci., 36 (2013), 745.
doi: 10.1002/mma.2622. |
[20] |
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993.
doi: 10.1016/j.jde.2014.01.028. |
[21] |
W. Jager and S. Luckhaus, On explosions of solutions to a system of partial differential equations modeling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.
doi: 10.1090/S0002-9947-1992-1046835-6. |
[22] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.
doi: 10.1016/0022-5193(70)90092-5. |
[23] |
N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system,, Ann. I. H. Poincaré AN, 31 (2014), 851.
doi: 10.1016/j.anihpc.2013.07.007. |
[24] |
C. Mu, L. Wang, P. Zheng and Q. Zhang, Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system,, Nonlinear Anal.-Real World Appl., 14 (2013), 1634.
doi: 10.1016/j.nonrwa.2012.10.022. |
[25] |
T. Nagai, Blow-up of radially symmetric solutions of a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581.
|
[26] |
E. Nakaguchi and K. Osaki, Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation,, Nonlinear Anal., 74 (2011), 286.
doi: 10.1016/j.na.2010.08.044. |
[27] |
V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology,, J. Theoret. Biol., 42 (1973), 63.
doi: 10.1016/0022-5193(73)90149-5. |
[28] |
L. Nirenberg, An extended interpolation inequality,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 733.
|
[29] |
T. Senba, Blowup behavior of radial solutions to Jager-Luckhaus system in high dimensional domains,, Funkcialaj Ekvacioj, 48 (2005), 247.
doi: 10.1619/fesi.48.247. |
[30] |
T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time,, Methods Appl. Anal., 8 (2001), 349.
|
[31] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.
doi: 10.1016/j.jde.2011.08.019. |
[32] |
Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520.
doi: 10.1016/j.jde.2011.07.010. |
[33] |
Y. Tao and Z.A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,, Math. Models Methods Appl. Sci., 23 (2013), 1.
doi: 10.1142/S0218202512500443. |
[34] |
J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849.
doi: 10.1080/03605300701319003. |
[35] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, 68 (1997). Google Scholar |
[36] |
L. Wang, Y. Li and C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source,, Discrete and Continuous Dynamical Systems, 34 (2014), 789.
doi: 10.3934/dcds.2014.34.789. |
[37] |
L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source,, J. Differential Equations, 256 (2014), 1847.
doi: 10.1016/j.jde.2013.12.007. |
[38] |
Z. A. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model,, Chaos, 17 (2007).
doi: 10.1063/1.2766864. |
[39] |
Z. A. Wang, On chemotaxis models with cell population interactions,, Math. Model. Nat. Phenom., 5 (2010), 173.
doi: 10.1051/mmnp/20105311. |
[40] |
Z. A. Wang, M. Winkler and D. Wrzosek, Singularity formation in chemotaxis systems with volume-filling effect,, Nonlinearity, 24 (2011), 3279.
doi: 10.1088/0951-7715/24/12/001. |
[41] |
Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion,, SIAM J. Math. Anal., 44 (2012), 3502.
doi: 10.1137/110853972. |
[42] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,, Comm. Partial Differential Equations, 35 (2010), 1516.
doi: 10.1080/03605300903473426. |
[43] |
M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties,, J. Math. Anal. Appl., 348 (2008), 708.
doi: 10.1016/j.jmaa.2008.07.071. |
[44] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748.
doi: 10.1016/j.matpur.2013.01.020. |
[45] |
M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12.
doi: 10.1002/mma.1146. |
[46] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.
doi: 10.1016/j.jde.2010.02.008. |
[47] |
M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044.
doi: 10.1016/j.na.2009.07.045. |
[48] |
D. Wrzosek, Global attractor for a chemotaxis model with prevention of over-crowding,, Nonlinear Anal., 59 (2004), 1293.
doi: 10.1016/j.na.2004.08.015. |
[1] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[2] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[3] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[4] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[5] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[6] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[7] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[8] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[9] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[10] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[11] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[12] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[13] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[14] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[15] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[16] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[17] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[18] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[19] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[20] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]