January  2015, 35(1): 353-365. doi: 10.3934/dcds.2015.35.353

Contribution to the ergodic theory of robustly transitive maps

1. 

Departamento de Matemática, Facultad de Ciencias, La Hechicera, Universidad de los Andes Mérida, 5101

2. 

Departamento de Matemática, Universidade Federal da Bahia, Av. Ademar de Barros s/n, 40170-110 Salvador, Brazil

Received  January 2014 Revised  April 2014 Published  August 2014

In this article we intend to contribute in the understanding of the ergodic properties of the set of robustly transitive local diffeomorphisms on a compact manifold without boundary. We prove that $C^1$ generic robustly transitive local diffeomorphisms have a residual subset of points with dense pre-orbits. Moreover, $C^1$ generically in the space of local diffeomorphisms with no splitting and all points with dense pre-orbits, there are uncountably many ergodic expanding invariant measures with full support and exhibiting exponential decay of correlations. In particular, these results hold for an important class of robustly transitive maps.
Citation: Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353
References:
[1]

F. Abdenur, C. Bonatti, S. Crovisier, L. Díaz and L. Wen, Periodic points and homoclinic classes,, Ergodic Theory Dynam. Systems, 27 (2007), 1.  doi: 10.1017/S0143385706000538.  Google Scholar

[2]

J. F. Alves and V. Pinheiro, Gibbs-Markov structures and limit laws for partially hyperbolic attractors with mostly expanding central direction,, Adv. Math., 223 (2010), 1706.  doi: 10.1016/j.aim.2009.10.010.  Google Scholar

[3]

C. Bonatti, L. Díaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math. (2), 158 (2003), 355.  doi: 10.4007/annals.2003.158.355.  Google Scholar

[4]

C. Bonatti, L. Díaz and R. Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms,, J. Inst. Math. Jussieu, 1 (2002), 513.  doi: 10.1017/S1474748002000142.  Google Scholar

[5]

J. Buzzi, T. Fisher, M. Sambarino and C. Vasquez, Maximal Entropy Measures for certain Partially Hyperbolic, Derived from Anosov systems,, Ergodic Thery Dynam. Systems, 32 (2012), 63.  doi: 10.1017/S0143385710000854.  Google Scholar

[6]

M. Carvalho, Sinai-Ruelle-Bowen measures for N-dimensional derived from Anosov diffeomorphisms,, Ergodic Theory Dynam. Systems, 13 (1993), 21.  doi: 10.1017/S0143385700007185.  Google Scholar

[7]

A. Castro, Fast mixing for attractors with a mostly contracting central direction,, Ergodic Theory Dynam. Systems, 24 (2004), 17.  doi: 10.1017/S0143385703000294.  Google Scholar

[8]

A. Castro, New criteria for hyperbolicity based on periodic points,, Bull. Braz. Math. Soc., 42 (2011), 455.  doi: 10.1007/s00574-011-0025-4.  Google Scholar

[9]

S. Hayashi, Connecting invariant manifolds and the solution of the $C^1-$stability and $\Omega-$stability conjectures for flows,, Ann. of Math.(2), 145 (1997), 81.  doi: 10.2307/2951824.  Google Scholar

[10]

C. Lizana, Robust Transitivity for Endomorphisms,, Ph.D thesis, (2010).   Google Scholar

[11]

C. Lizana and E. Pujals, Robust transitivity for endomorphisms,, Ergodic Theory Dynam. Systems, 33 (2013), 1082.  doi: 10.1017/S0143385712000247.  Google Scholar

[12]

K. Moriyasu, The ergodic closing lemma for $C^1$ regular maps,, Tokyo J. Math., 15 (1992), 171.  doi: 10.3836/tjm/1270130259.  Google Scholar

[13]

V. Pinheiro, Expanding measures,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 889.  doi: 10.1016/j.anihpc.2011.07.001.  Google Scholar

[14]

R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part,, Proc. Amer. Math. Soc., 140 (2012), 1973.  doi: 10.1090/S0002-9939-2011-11040-2.  Google Scholar

[15]

P. Varandas, Statistical properties of generalized Viana maps,, Dyn. Syst., 29 (2014), 167.  doi: 10.1080/14689367.2013.868868.  Google Scholar

[16]

L. Wen, The $C^1$-Closing Lemma for nonsingular endomorphisms,, Ergodic Theory Dynam. Systems, 11 (1991), 393.  doi: 10.1017/S0143385700006210.  Google Scholar

[17]

L. Wen, A uniform $C^1$-connecting lemma,, Discrete Contin. Dyn. Syst., 8 (2002), 257.  doi: 10.3934/dcds.2002.8.257.  Google Scholar

[18]

L. S. Young, Recurrence times and rates of mixing,, Israel J. Math., 110 (1999), 153.  doi: 10.1007/BF02808180.  Google Scholar

show all references

References:
[1]

F. Abdenur, C. Bonatti, S. Crovisier, L. Díaz and L. Wen, Periodic points and homoclinic classes,, Ergodic Theory Dynam. Systems, 27 (2007), 1.  doi: 10.1017/S0143385706000538.  Google Scholar

[2]

J. F. Alves and V. Pinheiro, Gibbs-Markov structures and limit laws for partially hyperbolic attractors with mostly expanding central direction,, Adv. Math., 223 (2010), 1706.  doi: 10.1016/j.aim.2009.10.010.  Google Scholar

[3]

C. Bonatti, L. Díaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math. (2), 158 (2003), 355.  doi: 10.4007/annals.2003.158.355.  Google Scholar

[4]

C. Bonatti, L. Díaz and R. Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms,, J. Inst. Math. Jussieu, 1 (2002), 513.  doi: 10.1017/S1474748002000142.  Google Scholar

[5]

J. Buzzi, T. Fisher, M. Sambarino and C. Vasquez, Maximal Entropy Measures for certain Partially Hyperbolic, Derived from Anosov systems,, Ergodic Thery Dynam. Systems, 32 (2012), 63.  doi: 10.1017/S0143385710000854.  Google Scholar

[6]

M. Carvalho, Sinai-Ruelle-Bowen measures for N-dimensional derived from Anosov diffeomorphisms,, Ergodic Theory Dynam. Systems, 13 (1993), 21.  doi: 10.1017/S0143385700007185.  Google Scholar

[7]

A. Castro, Fast mixing for attractors with a mostly contracting central direction,, Ergodic Theory Dynam. Systems, 24 (2004), 17.  doi: 10.1017/S0143385703000294.  Google Scholar

[8]

A. Castro, New criteria for hyperbolicity based on periodic points,, Bull. Braz. Math. Soc., 42 (2011), 455.  doi: 10.1007/s00574-011-0025-4.  Google Scholar

[9]

S. Hayashi, Connecting invariant manifolds and the solution of the $C^1-$stability and $\Omega-$stability conjectures for flows,, Ann. of Math.(2), 145 (1997), 81.  doi: 10.2307/2951824.  Google Scholar

[10]

C. Lizana, Robust Transitivity for Endomorphisms,, Ph.D thesis, (2010).   Google Scholar

[11]

C. Lizana and E. Pujals, Robust transitivity for endomorphisms,, Ergodic Theory Dynam. Systems, 33 (2013), 1082.  doi: 10.1017/S0143385712000247.  Google Scholar

[12]

K. Moriyasu, The ergodic closing lemma for $C^1$ regular maps,, Tokyo J. Math., 15 (1992), 171.  doi: 10.3836/tjm/1270130259.  Google Scholar

[13]

V. Pinheiro, Expanding measures,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 889.  doi: 10.1016/j.anihpc.2011.07.001.  Google Scholar

[14]

R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part,, Proc. Amer. Math. Soc., 140 (2012), 1973.  doi: 10.1090/S0002-9939-2011-11040-2.  Google Scholar

[15]

P. Varandas, Statistical properties of generalized Viana maps,, Dyn. Syst., 29 (2014), 167.  doi: 10.1080/14689367.2013.868868.  Google Scholar

[16]

L. Wen, The $C^1$-Closing Lemma for nonsingular endomorphisms,, Ergodic Theory Dynam. Systems, 11 (1991), 393.  doi: 10.1017/S0143385700006210.  Google Scholar

[17]

L. Wen, A uniform $C^1$-connecting lemma,, Discrete Contin. Dyn. Syst., 8 (2002), 257.  doi: 10.3934/dcds.2002.8.257.  Google Scholar

[18]

L. S. Young, Recurrence times and rates of mixing,, Israel J. Math., 110 (1999), 153.  doi: 10.1007/BF02808180.  Google Scholar

[1]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (1)

[Back to Top]