August  2015, 35(8): 3569-3584. doi: 10.3934/dcds.2015.35.3569

Stability analysis for linear heat conduction with memory kernels described by Gamma functions

1. 

Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La Sapienza”, Piazzale A. Moro, 2, I–00185 Roma

Received  October 2014 Revised  November 2014 Published  February 2015

This paper analyzes heat equation with memory in the case of kernels that are linear combinations of Gamma distributions. In this case, it is possible to rewrite the non-local equation as a local system of partial differential equations of hyperbolic type. Stability is studied in details by analyzing the corresponding dispersion relation, providing sufficient stability condition for the general case and sharp instability thresholds in the case of linear combinations of the first three Gamma functions.
Citation: Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569
References:
[1]

C. Cattaneo, Sulla conduzione del calore,, Atti Semin. Mat. Fis. Univ. Modena, 3 (1949), 83.   Google Scholar

[2]

V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory,, Asymptot. Anal., 50 (2006), 269.   Google Scholar

[3]

M. Conti, E. M. Marchini and V. Pata, Exponential stability for a class of linear hyperbolic equations with hereditary memory,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1555.  doi: 10.3934/dcdsb.2013.18.1555.  Google Scholar

[4]

A. Chowdury and C. I. Christov, Memory effects for the heat conductivity of random suspensions of spheres,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 3253.  doi: 10.1098/rspa.2010.0133.  Google Scholar

[5]

B. R. Duffy, P. Freitas and M. Grinfeld, Memory driven instability in a diffusion process,, SIAM J. Math. Anal., 33 (2002), 1090.  doi: 10.1137/S0036141001388592.  Google Scholar

[6]

G. Fichera, Avere una memoria tenace crea gravi problemi, (Italian), Arch. Rational Mech. Anal., 70 (1979), 101.  doi: 10.1007/BF00250347.  Google Scholar

[7]

C. Giorgi, M. G. Naso and V. Pata, Exponential stability in linear heat conduction with memory: A semigroup approach,, Commun. Appl. Anal., 5 (2001), 121.   Google Scholar

[8]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113.  doi: 10.1007/BF00281373.  Google Scholar

[9]

D. D. Joseph and L. Preziosi, Heat waves,, Rev. Modern Phys., 61 (1989), 41.  doi: 10.1103/RevModPhys.61.41.  Google Scholar

[10]

W. E. Olmstead, S. H. Davis, S. Rosenblat and W. L. Kath, Bifurcation with memory,, SIAM J. Appl. Math., 46 (1986), 171.  doi: 10.1137/0146013.  Google Scholar

[11]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation,, Hokkaido Math. J., 14 (1985), 249.  doi: 10.14492/hokmj/1381757663.  Google Scholar

[12]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences,, Texts in Applied Mathematics, (2011).  doi: 10.1007/978-1-4419-7646-8.  Google Scholar

show all references

References:
[1]

C. Cattaneo, Sulla conduzione del calore,, Atti Semin. Mat. Fis. Univ. Modena, 3 (1949), 83.   Google Scholar

[2]

V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory,, Asymptot. Anal., 50 (2006), 269.   Google Scholar

[3]

M. Conti, E. M. Marchini and V. Pata, Exponential stability for a class of linear hyperbolic equations with hereditary memory,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1555.  doi: 10.3934/dcdsb.2013.18.1555.  Google Scholar

[4]

A. Chowdury and C. I. Christov, Memory effects for the heat conductivity of random suspensions of spheres,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 3253.  doi: 10.1098/rspa.2010.0133.  Google Scholar

[5]

B. R. Duffy, P. Freitas and M. Grinfeld, Memory driven instability in a diffusion process,, SIAM J. Math. Anal., 33 (2002), 1090.  doi: 10.1137/S0036141001388592.  Google Scholar

[6]

G. Fichera, Avere una memoria tenace crea gravi problemi, (Italian), Arch. Rational Mech. Anal., 70 (1979), 101.  doi: 10.1007/BF00250347.  Google Scholar

[7]

C. Giorgi, M. G. Naso and V. Pata, Exponential stability in linear heat conduction with memory: A semigroup approach,, Commun. Appl. Anal., 5 (2001), 121.   Google Scholar

[8]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113.  doi: 10.1007/BF00281373.  Google Scholar

[9]

D. D. Joseph and L. Preziosi, Heat waves,, Rev. Modern Phys., 61 (1989), 41.  doi: 10.1103/RevModPhys.61.41.  Google Scholar

[10]

W. E. Olmstead, S. H. Davis, S. Rosenblat and W. L. Kath, Bifurcation with memory,, SIAM J. Appl. Math., 46 (1986), 171.  doi: 10.1137/0146013.  Google Scholar

[11]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation,, Hokkaido Math. J., 14 (1985), 249.  doi: 10.14492/hokmj/1381757663.  Google Scholar

[12]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences,, Texts in Applied Mathematics, (2011).  doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[1]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[2]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[3]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[4]

Vittorino Pata. Exponential stability in linear viscoelasticity with almost flat memory kernels. Communications on Pure & Applied Analysis, 2010, 9 (3) : 721-730. doi: 10.3934/cpaa.2010.9.721

[5]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[6]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[7]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[8]

M. Carme Leseduarte, Ramon Quintanilla. Phragmén-Lindelöf alternative for an exact heat conduction equation with delay. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1221-1235. doi: 10.3934/cpaa.2013.12.1221

[9]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[10]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[11]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[12]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[13]

Martin Fraas, David Krejčiřík, Yehuda Pinchover. On some strong ratio limit theorems for heat kernels. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 495-509. doi: 10.3934/dcds.2010.28.495

[14]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

[15]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[16]

Claudio Giorgi, Diego Grandi, Vittorino Pata. On the Green-Naghdi Type III heat conduction model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2133-2143. doi: 10.3934/dcdsb.2014.19.2133

[17]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic & Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[18]

Mi-Ho Giga, Yoshikazu Giga, Takeshi Ohtsuka, Noriaki Umeda. On behavior of signs for the heat equation and a diffusion method for data separation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2277-2296. doi: 10.3934/cpaa.2013.12.2277

[19]

Tomás Caraballo, José Real, I. D. Chueshov. Pullback attractors for stochastic heat equations in materials with memory. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 525-539. doi: 10.3934/dcdsb.2008.9.525

[20]

Eugenio Sinestrari. Wave equation with memory. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 881-896. doi: 10.3934/dcds.1999.5.881

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]