• Previous Article
    Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type
  • DCDS Home
  • This Issue
  • Next Article
    On the blow-up results for a class of strongly perturbed semilinear heat equations
August  2015, 35(8): 3627-3682. doi: 10.3934/dcds.2015.35.3627

On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

2. 

School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China

Received  January 2014 Revised  December 2014 Published  February 2015

Motivated by some nonlinear models recently arising in Micro-Electro-Mechanical System (MEMS) and new progress on one-dimensional mean curvature type problems, we investigate the existence and exact numbers of positive solutions for a class of boundary value problems with $\varphi$-Laplacian $$ -(\varphi(u'))'=\lambda f(u)\; on (-L, L),\quad u(-L)=u(L)=0, $$ when the parameters $\lambda$ and $L$ vary. Various exact multiplicity results as well as global bifurcation diagrams are obtained. These results include the applications to one-dimensional MEMS equations with fringing field as well as mean curvature type problems. We also extend and improve one of the main results of Korman and Li [Proc. Roy. Soc. Edinburgh Sect. A, 140(6):1197--1215, 2010] (Theorem 3.4). With the aid of numerical simulations, we find many interesting new examples, which reveal the striking complexity of bifurcation patterns for the problem.
Citation: Hongjing Pan, Ruixiang Xing. On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3627-3682. doi: 10.3934/dcds.2015.35.3627
References:
[1]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical positive solutions of a prescribed curvature equation with singularities,, Rend. Istit. Mat. Univ. Trieste, 39 (2007), 63.   Google Scholar

[2]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation,, J. Differential Equations, 243 (2007), 208.  doi: 10.1016/j.jde.2007.05.031.  Google Scholar

[3]

N. D. Brubaker and A. E. Lindsay, Analysis of the singular solution branch of a prescribed mean curvature equation with singular nonlinearity modeling a MEMS capacitor,, Preprint, ().   Google Scholar

[4]

N. D. Brubaker and A. E. Lindsay, The onset of multivalued solutions of a prescribed mean curvature equation with singular nonlinearity,, Eur. J. Appl. Math., 24 (2013), 631.  doi: 10.1017/S0956792513000077.  Google Scholar

[5]

N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models,, Eur. J. Appl. Math., 22 (2011), 455.  doi: 10.1017/S0956792511000180.  Google Scholar

[6]

N. D. Brubaker and J. A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity,, Nonlinear Anal., 75 (2012), 5086.  doi: 10.1016/j.na.2012.04.025.  Google Scholar

[7]

N. D. Brubaker, J. I. Siddique, E. Sabo, R. Deaton and J. A. Pelesko, Refinements to the study of electrostatic deflections: theory and experiment,, Eur. J. Appl. Math., 24 (2013), 343.  doi: 10.1017/S0956792512000435.  Google Scholar

[8]

M. Burns and M. Grinfeld, Steady state solutions of a bi-stable quasi-linear equation with saturating flux,, Eur. J. Appl. Math., 22 (2011), 317.  doi: 10.1017/S0956792511000076.  Google Scholar

[9]

Y.-H. Cheng, K.-C. Hung and S.-H. Wang, Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS,, Nonlinear Anal., 89 (2013), 284.  doi: 10.1016/j.na.2013.04.018.  Google Scholar

[10]

C.-H. Chuang, On Exact Multiplicity and Bifurcation Diagrams of Positive Solutions of a One-Dimensional Prescribed Mean Curvature Problem,, Master Thesis, (2011).   Google Scholar

[11]

J. Dávila and J. Wei, Point ruptures for a MEMS equation with fringing field,, Comm. Partial Differential Equations, 37 (2012), 1462.  doi: 10.1080/03605302.2012.679990.  Google Scholar

[12]

J. Escher, P. Laurencot and C. Walker, Dynamics of a free boundary problem with curvature modeling electrostatic MEMS,, Trans. Amer. Math. Soc., ().  doi: 10.1090/S0002-9947-2014-06320-4.  Google Scholar

[13]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, vol. 20 of Courant Lect. Notes Math.,, Courant Inst. Math. Sci., (2010).   Google Scholar

[14]

M. Fila, B. Kawohl and H. A. Levine, Quenching for quasilinear equations,, Comm. Partial Differential Equations, 17 (1992), 593.  doi: 10.1080/03605309208820855.  Google Scholar

[15]

P. Habets and P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem,, Commun. Contemp. Math., 9 (2007), 701.  doi: 10.1142/S0219199707002617.  Google Scholar

[16]

P. Korman and Y. Li, Global solution curves for a class of quasilinear boundary-value problems,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1197.  doi: 10.1017/S0308210509001449.  Google Scholar

[17]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,, Indiana Univ. Math. J., 20 (1970), 1.  doi: 10.1512/iumj.1971.20.20001.  Google Scholar

[18]

H. A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations,, Ann. Mat. Pura Appl. (4), 155 (1989), 243.  doi: 10.1007/BF01765943.  Google Scholar

[19]

W. Li and Z. Liu, Exact number of solutions of a prescribed mean curvature equation,, J. Math. Anal. Appl., 367 (2010), 486.  doi: 10.1016/j.jmaa.2010.01.055.  Google Scholar

[20]

A. E. Lindsay and M. J. Ward, Asymptotics of some nonlinear eigenvalue problems for a MEMS capacitor. I. Fold point asymptotics,, Methods Appl. Anal., 15 (2008), 297.  doi: 10.4310/MAA.2008.v15.n3.a4.  Google Scholar

[21]

F. Obersnel, Classical and non-classical sign-changing solutions of a one-dimensional autonomous prescribed curvature equation,, Adv. Nonlinear Stud., 7 (2007), 671.   Google Scholar

[22]

H. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity,, Nonlinear Anal., 70 (2009), 999.  doi: 10.1016/j.na.2008.01.027.  Google Scholar

[23]

H. Pan and R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations,, Nonlinear Anal., 74 (2011), 1234.  doi: 10.1016/j.na.2010.09.063.  Google Scholar

[24]

H. Pan and R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations. II,, Nonlinear Anal., 74 (2011), 3751.  doi: 10.1016/j.na.2011.03.020.  Google Scholar

[25]

H. Pan and R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to MEMS models,, Nonlinear Anal. Real World Appl., 13 (2012), 2432.  doi: 10.1016/j.nonrwa.2012.02.012.  Google Scholar

[26]

H. Pan and R. Xing, Sub- and supersolution methods for prescribed mean curvature equations with Dirichlet boundary conditions,, J. Differential Equations, 254 (2013), 1464.  doi: 10.1016/j.jde.2012.10.025.  Google Scholar

[27]

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS,, Chapman & Hall/CRC, (2003).   Google Scholar

[28]

J. A. Pelesko and T. A. Driscoll, The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models,, J. Engrg. Math., 53 (2005), 239.  doi: 10.1007/s10665-005-9013-2.  Google Scholar

[29]

J. Wei and D. Ye, On MEMS equation with fringing field,, Proc. Amer. Math. Soc., 138 (2010), 1693.  doi: 10.1090/S0002-9939-09-10226-5.  Google Scholar

[30]

X. Zhang and M. Feng, Exact number of solutions of a one-dimensional prescribed mean curvature equation with concave-convex nonlinearities,, J. Math. Anal. Appl., 395 (2013), 393.  doi: 10.1016/j.jmaa.2012.05.053.  Google Scholar

show all references

References:
[1]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical positive solutions of a prescribed curvature equation with singularities,, Rend. Istit. Mat. Univ. Trieste, 39 (2007), 63.   Google Scholar

[2]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation,, J. Differential Equations, 243 (2007), 208.  doi: 10.1016/j.jde.2007.05.031.  Google Scholar

[3]

N. D. Brubaker and A. E. Lindsay, Analysis of the singular solution branch of a prescribed mean curvature equation with singular nonlinearity modeling a MEMS capacitor,, Preprint, ().   Google Scholar

[4]

N. D. Brubaker and A. E. Lindsay, The onset of multivalued solutions of a prescribed mean curvature equation with singular nonlinearity,, Eur. J. Appl. Math., 24 (2013), 631.  doi: 10.1017/S0956792513000077.  Google Scholar

[5]

N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models,, Eur. J. Appl. Math., 22 (2011), 455.  doi: 10.1017/S0956792511000180.  Google Scholar

[6]

N. D. Brubaker and J. A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity,, Nonlinear Anal., 75 (2012), 5086.  doi: 10.1016/j.na.2012.04.025.  Google Scholar

[7]

N. D. Brubaker, J. I. Siddique, E. Sabo, R. Deaton and J. A. Pelesko, Refinements to the study of electrostatic deflections: theory and experiment,, Eur. J. Appl. Math., 24 (2013), 343.  doi: 10.1017/S0956792512000435.  Google Scholar

[8]

M. Burns and M. Grinfeld, Steady state solutions of a bi-stable quasi-linear equation with saturating flux,, Eur. J. Appl. Math., 22 (2011), 317.  doi: 10.1017/S0956792511000076.  Google Scholar

[9]

Y.-H. Cheng, K.-C. Hung and S.-H. Wang, Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS,, Nonlinear Anal., 89 (2013), 284.  doi: 10.1016/j.na.2013.04.018.  Google Scholar

[10]

C.-H. Chuang, On Exact Multiplicity and Bifurcation Diagrams of Positive Solutions of a One-Dimensional Prescribed Mean Curvature Problem,, Master Thesis, (2011).   Google Scholar

[11]

J. Dávila and J. Wei, Point ruptures for a MEMS equation with fringing field,, Comm. Partial Differential Equations, 37 (2012), 1462.  doi: 10.1080/03605302.2012.679990.  Google Scholar

[12]

J. Escher, P. Laurencot and C. Walker, Dynamics of a free boundary problem with curvature modeling electrostatic MEMS,, Trans. Amer. Math. Soc., ().  doi: 10.1090/S0002-9947-2014-06320-4.  Google Scholar

[13]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, vol. 20 of Courant Lect. Notes Math.,, Courant Inst. Math. Sci., (2010).   Google Scholar

[14]

M. Fila, B. Kawohl and H. A. Levine, Quenching for quasilinear equations,, Comm. Partial Differential Equations, 17 (1992), 593.  doi: 10.1080/03605309208820855.  Google Scholar

[15]

P. Habets and P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem,, Commun. Contemp. Math., 9 (2007), 701.  doi: 10.1142/S0219199707002617.  Google Scholar

[16]

P. Korman and Y. Li, Global solution curves for a class of quasilinear boundary-value problems,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1197.  doi: 10.1017/S0308210509001449.  Google Scholar

[17]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,, Indiana Univ. Math. J., 20 (1970), 1.  doi: 10.1512/iumj.1971.20.20001.  Google Scholar

[18]

H. A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations,, Ann. Mat. Pura Appl. (4), 155 (1989), 243.  doi: 10.1007/BF01765943.  Google Scholar

[19]

W. Li and Z. Liu, Exact number of solutions of a prescribed mean curvature equation,, J. Math. Anal. Appl., 367 (2010), 486.  doi: 10.1016/j.jmaa.2010.01.055.  Google Scholar

[20]

A. E. Lindsay and M. J. Ward, Asymptotics of some nonlinear eigenvalue problems for a MEMS capacitor. I. Fold point asymptotics,, Methods Appl. Anal., 15 (2008), 297.  doi: 10.4310/MAA.2008.v15.n3.a4.  Google Scholar

[21]

F. Obersnel, Classical and non-classical sign-changing solutions of a one-dimensional autonomous prescribed curvature equation,, Adv. Nonlinear Stud., 7 (2007), 671.   Google Scholar

[22]

H. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity,, Nonlinear Anal., 70 (2009), 999.  doi: 10.1016/j.na.2008.01.027.  Google Scholar

[23]

H. Pan and R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations,, Nonlinear Anal., 74 (2011), 1234.  doi: 10.1016/j.na.2010.09.063.  Google Scholar

[24]

H. Pan and R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations. II,, Nonlinear Anal., 74 (2011), 3751.  doi: 10.1016/j.na.2011.03.020.  Google Scholar

[25]

H. Pan and R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to MEMS models,, Nonlinear Anal. Real World Appl., 13 (2012), 2432.  doi: 10.1016/j.nonrwa.2012.02.012.  Google Scholar

[26]

H. Pan and R. Xing, Sub- and supersolution methods for prescribed mean curvature equations with Dirichlet boundary conditions,, J. Differential Equations, 254 (2013), 1464.  doi: 10.1016/j.jde.2012.10.025.  Google Scholar

[27]

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS,, Chapman & Hall/CRC, (2003).   Google Scholar

[28]

J. A. Pelesko and T. A. Driscoll, The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models,, J. Engrg. Math., 53 (2005), 239.  doi: 10.1007/s10665-005-9013-2.  Google Scholar

[29]

J. Wei and D. Ye, On MEMS equation with fringing field,, Proc. Amer. Math. Soc., 138 (2010), 1693.  doi: 10.1090/S0002-9939-09-10226-5.  Google Scholar

[30]

X. Zhang and M. Feng, Exact number of solutions of a one-dimensional prescribed mean curvature equation with concave-convex nonlinearities,, J. Math. Anal. Appl., 395 (2013), 393.  doi: 10.1016/j.jmaa.2012.05.053.  Google Scholar

[1]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[2]

Guowei Dai, Alfonso Romero, Pedro J. Torres. Global bifurcation of solutions of the mean curvature spacelike equation in certain standard static spacetimes. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020118

[3]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[4]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[5]

Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147

[6]

Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95

[7]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[8]

Rafael Labarca, Solange Aranzubia. A formula for the boundary of chaos in the lexicographical scenario and applications to the bifurcation diagram of the standard two parameter family of quadratic increasing-increasing Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1745-1776. doi: 10.3934/dcds.2018072

[9]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[10]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[11]

Guowei Dai. Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5323-5345. doi: 10.3934/dcds.2016034

[12]

Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031

[13]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[14]

Manuel Núñez. The long-time evolution of mean field magnetohydrodynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 465-478. doi: 10.3934/dcdsb.2004.4.465

[15]

Zongming Guo, Long Wei. A fourth order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2493-2508. doi: 10.3934/cpaa.2014.13.2493

[16]

Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237

[17]

Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155

[18]

Mehdi Badra, Kaushik Bal, Jacques Giacomoni. Existence results to a quasilinear and singular parabolic equation. Conference Publications, 2011, 2011 (Special) : 117-125. doi: 10.3934/proc.2011.2011.117

[19]

Jean-Philippe Lessard, Evelyn Sander, Thomas Wanner. Rigorous continuation of bifurcation points in the diblock copolymer equation. Journal of Computational Dynamics, 2017, 4 (1&2) : 71-118. doi: 10.3934/jcd.2017003

[20]

Jongmin Han, Masoud Yari. Dynamic bifurcation of the complex Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 875-891. doi: 10.3934/dcdsb.2009.11.875

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]