\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models

Abstract Related Papers Cited by
  • Motivated by some nonlinear models recently arising in Micro-Electro-Mechanical System (MEMS) and new progress on one-dimensional mean curvature type problems, we investigate the existence and exact numbers of positive solutions for a class of boundary value problems with $\varphi$-Laplacian $$ -(\varphi(u'))'=\lambda f(u)\; on (-L, L),\quad u(-L)=u(L)=0, $$ when the parameters $\lambda$ and $L$ vary. Various exact multiplicity results as well as global bifurcation diagrams are obtained. These results include the applications to one-dimensional MEMS equations with fringing field as well as mean curvature type problems. We also extend and improve one of the main results of Korman and Li [Proc. Roy. Soc. Edinburgh Sect. A, 140(6):1197--1215, 2010] (Theorem 3.4). With the aid of numerical simulations, we find many interesting new examples, which reveal the striking complexity of bifurcation patterns for the problem.
    Mathematics Subject Classification: Primary: 34B18, 34C23; Secondary: 35J93, 74G35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical positive solutions of a prescribed curvature equation with singularities, Rend. Istit. Mat. Univ. Trieste, 39 (2007), 63-85.

    [2]

    D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation, J. Differential Equations, 243 (2007), 208-237.doi: 10.1016/j.jde.2007.05.031.

    [3]

    N. D. Brubaker and A. E. Lindsay, Analysis of the singular solution branch of a prescribed mean curvature equation with singular nonlinearity modeling a MEMS capacitor, Preprint, arXiv:1110.0890v4.

    [4]

    N. D. Brubaker and A. E. Lindsay, The onset of multivalued solutions of a prescribed mean curvature equation with singular nonlinearity, Eur. J. Appl. Math., 24 (2013), 631-656.doi: 10.1017/S0956792513000077.

    [5]

    N. D. Brubaker and J. A. Pelesko, Non-linear effects on canonical MEMS models, Eur. J. Appl. Math., 22 (2011), 455-470.doi: 10.1017/S0956792511000180.

    [6]

    N. D. Brubaker and J. A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal., 75 (2012), 5086-5102.doi: 10.1016/j.na.2012.04.025.

    [7]

    N. D. Brubaker, J. I. Siddique, E. Sabo, R. Deaton and J. A. Pelesko, Refinements to the study of electrostatic deflections: theory and experiment, Eur. J. Appl. Math., 24 (2013), 343-370.doi: 10.1017/S0956792512000435.

    [8]

    M. Burns and M. Grinfeld, Steady state solutions of a bi-stable quasi-linear equation with saturating flux, Eur. J. Appl. Math., 22 (2011), 317-331.doi: 10.1017/S0956792511000076.

    [9]

    Y.-H. Cheng, K.-C. Hung and S.-H. Wang, Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS, Nonlinear Anal., 89 (2013), 284-298.doi: 10.1016/j.na.2013.04.018.

    [10]

    C.-H. Chuang, On Exact Multiplicity and Bifurcation Diagrams of Positive Solutions of a One-Dimensional Prescribed Mean Curvature Problem, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, 2011, (Directed by S.-H. Wang).

    [11]

    J. Dávila and J. Wei, Point ruptures for a MEMS equation with fringing field, Comm. Partial Differential Equations, 37 (2012), 1462-1493.doi: 10.1080/03605302.2012.679990.

    [12]

    J. Escher, P. Laurencot and C. Walker, Dynamics of a free boundary problem with curvature modeling electrostatic MEMS, Trans. Amer. Math. Soc., In press. arXiv:1302.6026 doi: 10.1090/S0002-9947-2014-06320-4.

    [13]

    P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, vol. 20 of Courant Lect. Notes Math., Courant Inst. Math. Sci., New York., 2010.

    [14]

    M. Fila, B. Kawohl and H. A. Levine, Quenching for quasilinear equations, Comm. Partial Differential Equations, 17 (1992), 593-614.doi: 10.1080/03605309208820855.

    [15]

    P. Habets and P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem, Commun. Contemp. Math., 9 (2007), 701-730.doi: 10.1142/S0219199707002617.

    [16]

    P. Korman and Y. Li, Global solution curves for a class of quasilinear boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1197-1215.doi: 10.1017/S0308210509001449.

    [17]

    T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1-13.doi: 10.1512/iumj.1971.20.20001.

    [18]

    H. A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations, Ann. Mat. Pura Appl. (4), 155 (1989), 243-260.doi: 10.1007/BF01765943.

    [19]

    W. Li and Z. Liu, Exact number of solutions of a prescribed mean curvature equation, J. Math. Anal. Appl., 367 (2010), 486-498.doi: 10.1016/j.jmaa.2010.01.055.

    [20]

    A. E. Lindsay and M. J. Ward, Asymptotics of some nonlinear eigenvalue problems for a MEMS capacitor. I. Fold point asymptotics, Methods Appl. Anal., 15 (2008), 297-325.doi: 10.4310/MAA.2008.v15.n3.a4.

    [21]

    F. Obersnel, Classical and non-classical sign-changing solutions of a one-dimensional autonomous prescribed curvature equation, Adv. Nonlinear Stud., 7 (2007), 671-682.

    [22]

    H. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal., 70 (2009), 999-1010.doi: 10.1016/j.na.2008.01.027.

    [23]

    H. Pan and R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, Nonlinear Anal., 74 (2011), 1234-1260.doi: 10.1016/j.na.2010.09.063.

    [24]

    H. Pan and R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations. II, Nonlinear Anal., 74 (2011), 3751-3768.doi: 10.1016/j.na.2011.03.020.

    [25]

    H. Pan and R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to MEMS models, Nonlinear Anal. Real World Appl., 13 (2012), 2432-2445.doi: 10.1016/j.nonrwa.2012.02.012.

    [26]

    H. Pan and R. Xing, Sub- and supersolution methods for prescribed mean curvature equations with Dirichlet boundary conditions, J. Differential Equations, 254 (2013), 1464-1499.doi: 10.1016/j.jde.2012.10.025.

    [27]

    J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003.

    [28]

    J. A. Pelesko and T. A. Driscoll, The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models, J. Engrg. Math., 53 (2005), 239-252.doi: 10.1007/s10665-005-9013-2.

    [29]

    J. Wei and D. Ye, On MEMS equation with fringing field, Proc. Amer. Math. Soc., 138 (2010), 1693-1699.doi: 10.1090/S0002-9939-09-10226-5.

    [30]

    X. Zhang and M. Feng, Exact number of solutions of a one-dimensional prescribed mean curvature equation with concave-convex nonlinearities, J. Math. Anal. Appl., 395 (2013), 393-402.doi: 10.1016/j.jmaa.2012.05.053.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(148) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return