Citation: |
[1] |
R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd edition, Applied Mathematical Sciences, 75, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4612-1029-0. |
[2] |
N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups part I: Introduction and structure-preserving properties, Found. Comput. Math., 9 (2009), 197-219.doi: 10.1007/s10208-008-9030-4. |
[3] |
A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lecture Notes, 10, American Mathematical Society, Providence, RI, 1999. |
[4] |
A. Coste, P. Dazord and A. Weinstein, Groupoï des symplectiques, in Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Publ. Dép. Math. Nouvelle Sér. A, 87, Univ. Claude-Bernard, Lyon, 1987, i-ii, 1-62. |
[5] |
Z. Ge, Generating functions, Hamilton-Jacobi equations and symplectic groupoids on Poisson manifolds, Indiana Univ. Math. J., 39 (1990), 859-876.doi: 10.1512/iumj.1990.39.39042. |
[6] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006,. |
[7] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dyn. Syst., 23 (2008), 351-397.doi: 10.1080/14689360802294220. |
[8] |
C. Kane, J. E. Marsden and M. Ortiz, Symplectic-energy-momentum preserving variational integrators, J. Math. Phys., 40 (1999), 3353-3371.doi: 10.1063/1.532892. |
[9] |
W.-S. Koon and J. E. Marsden, Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction, SIAM J. Control Optim., 35 (1997), 901-929.doi: 10.1137/S0363012995290367. |
[10] |
P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Translated from the French by Bertram Eugene Schwarzbach, Mathematics and its Applications, 35, D. Reidel Publishing Co., Dordrecht, 1987. |
[11] |
K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005.doi: 10.1017/CBO9781107325883. |
[12] |
C.-M. Marle, From momentum maps and dual pairs to symplectic and Poisson groupoids, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 493-523.doi: 10.1007/0-8176-4419-9\_17. |
[13] |
J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348; Corrigendum, Nonlinearity, 19 (2006), 3003-3004.doi: 10.1088/0951-7715/19/6/006. |
[14] |
J. C. Marrero, D. Martín de Diego and E. Martínez, The exact discrete Lagrangian function on Lie groupoids and some applications, in preparation. |
[15] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.doi: 10.1017/S096249290100006X. |
[16] |
R. I. McLachlan and C. Scovel, A survey of open problems in symplectic integration, in Integration Algorithms and Classical Mechanics (Toronto, ON, 1993), Fields Inst. Commun., 10, Amer. Math. Soc., Providence, RI, 1996, 151-180. |
[17] |
J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243.doi: 10.1007/BF02352494. |
[18] |
J. Śniatycki and W. M. Tulczyjew, Generating forms of Lagrangian submanifolds, Indiana Univ. Math. J., 22 (1972), 267-275.doi: 10.1512/iumj.1973.22.22021. |
[19] |
A. Stern, Discrete Hamilton-Pontryagin mechanics and generating functions on Lie groupoids, J. Symplectic Geom., 8 (2010), 225-238.doi: 10.4310/JSG.2010.v8.n2.a5. |
[20] |
Y. B. Suris, Hamiltonian methods of Runge-Kutta type and their variational interpretation, Mat. Model., 2 (1990), 78-87. |
[21] |
W. M. Tulczyjew, The Legendre transformation, Ann. Inst. H. Poincaré Sect. A (N.S.), 27 (1977), 101-114. |
[22] |
A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40 (1988), 705-727.doi: 10.2969/jmsj/04040705. |
[23] |
A. Weinstein, Lagrangian mechanics and groupoids, in Mechanics Day (Waterloo, ON, 1992), Fields Inst. Commun., 7, American Mathematical Society, Providence, RI, 1996, 207-231. |
[24] |
P. Xu, On Poisson groupoids, Internat. J. Math., 6 (1995), 101-124.doi: 10.1142/S0129167X95000080. |
[25] |
H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. II. Variational structures, J. Geom. Phys., 57 (2006), 209-250.doi: 10.1016/j.geomphys.2006.02.012. |