-
Previous Article
Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities
- DCDS Home
- This Issue
-
Next Article
On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models
Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type
1. | Clermont Université, Université Blaise Pascal, 63000 Clermont-Ferrand, France |
2. | Department of Mathematics, College of Sciences, Hohai University, Nanjing 210098, China |
References:
[1] |
SIAM J. Math. Anal., 33 (2001), 959-981.
doi: 10.1137/S0036141000377900. |
[2] |
Trans. Amer. Math. Soc., 350 (1998), 2847-2870.
doi: 10.1090/S0002-9947-98-02204-1. |
[3] |
Proceedings of the International Congress of Mathematicians, 3, Higher Education Press, Beijing, (2002), 761-772. |
[4] |
Arch. Rat. Mech. Anal., 172 (2004), 65-91.
doi: 10.1007/s00205-003-0291-4. |
[5] |
Oxford Lecture Series in Math. and its Applications, 20. Oxford University Press, Oxford, 2000. |
[6] |
Masson, Paris, 1993. |
[7] |
J. Math. Phys., 44 (2003), 6132-6139.
doi: 10.1063/1.1621057. |
[8] |
Arch. Rational Mech. Anal., 121 (1992), 131-185.
doi: 10.1007/BF00375416. |
[9] |
Comm. Pure Appl. Math., 18 (1965), 695-715.
doi: 10.1002/cpa.3160180408. |
[10] |
Amer. Math. Soc., Providence, R.I. 1970. |
[11] |
Pitcher Lectures in Math. Sciences, Lehigh University, Amer. Math. Soc., 1990. |
[12] |
Mat. Sbornik (N.S.), 81 (1970), 228-255. |
[13] |
J. Math. Phys., 47 (2006), 013503, 16 pages.
doi: 10.1063/1.2158435. |
[14] |
Comm. Part. Diff. Eqs., 28 (2003), 1203-1220.
doi: 10.1081/PDE-120021192. |
[15] |
Comm. Pure Appl. Math., 10 (1957), 537-566.
doi: 10.1002/cpa.3160100406. |
[16] |
Research in Appl. Math., 32, Wiely/Masson, 1994. |
[17] |
J. Math. Pures Appl., 91 (2009), 553-568.
doi: 10.1016/j.matpur.2009.01.008. |
[18] |
Comm. Partial Diff. Equations, 19 (1994), 1263-1317.
doi: 10.1080/03605309408821055. |
[19] |
Proc. Am. Math. Soc., 132 (2004), 1095-1102.
doi: 10.1090/S0002-9939-03-07246-0. |
[20] |
Math. Meth. Appl. Sci., 30 (2007), 479-500.
doi: 10.1002/mma.797. |
[21] |
Comm. Pure Appl. Math., 30 (1977), 767-796.
doi: 10.1002/cpa.3160300605. |
[22] |
Appl. Math. Letters, 11 (1998), 75-78.
doi: 10.1016/S0893-9659(98)00083-4. |
[23] |
Nonlinearity, 20 (2007), 1927-1953.
doi: 10.1088/0951-7715/20/8/007. |
[24] |
J. Math. Phys., 52 (2011), 053702 (23 pages).
doi: 10.1063/1.3591133. |
[25] |
in IMA Vol. Math. Appl., 29, Springer, New York, (1991), 315-333.
doi: 10.1007/978-1-4613-9121-0_24. |
[26] |
Diderot, Paris, 1996. |
[27] |
Arch. Rat. Mech. Anal., 172 (2004), 309-331.
doi: 10.1007/s00205-003-0303-4. |
[28] |
Mém. Soc. Math. France, 56 (1994), 125pp. |
[29] |
Dolk. Akad. Nauk SSSR, 282 (1985), 534-537. |
[30] |
Izv. Akad. Nauk SSSR Ser. Mat., 54 (1990), 1048-1068; translation in Math. USSR-Izv., 37 (1991), 397-419. |
[31] |
J. Diff. Eqs., 68 (1987), 118-136.
doi: 10.1016/0022-0396(87)90188-4. |
show all references
References:
[1] |
SIAM J. Math. Anal., 33 (2001), 959-981.
doi: 10.1137/S0036141000377900. |
[2] |
Trans. Amer. Math. Soc., 350 (1998), 2847-2870.
doi: 10.1090/S0002-9947-98-02204-1. |
[3] |
Proceedings of the International Congress of Mathematicians, 3, Higher Education Press, Beijing, (2002), 761-772. |
[4] |
Arch. Rat. Mech. Anal., 172 (2004), 65-91.
doi: 10.1007/s00205-003-0291-4. |
[5] |
Oxford Lecture Series in Math. and its Applications, 20. Oxford University Press, Oxford, 2000. |
[6] |
Masson, Paris, 1993. |
[7] |
J. Math. Phys., 44 (2003), 6132-6139.
doi: 10.1063/1.1621057. |
[8] |
Arch. Rational Mech. Anal., 121 (1992), 131-185.
doi: 10.1007/BF00375416. |
[9] |
Comm. Pure Appl. Math., 18 (1965), 695-715.
doi: 10.1002/cpa.3160180408. |
[10] |
Amer. Math. Soc., Providence, R.I. 1970. |
[11] |
Pitcher Lectures in Math. Sciences, Lehigh University, Amer. Math. Soc., 1990. |
[12] |
Mat. Sbornik (N.S.), 81 (1970), 228-255. |
[13] |
J. Math. Phys., 47 (2006), 013503, 16 pages.
doi: 10.1063/1.2158435. |
[14] |
Comm. Part. Diff. Eqs., 28 (2003), 1203-1220.
doi: 10.1081/PDE-120021192. |
[15] |
Comm. Pure Appl. Math., 10 (1957), 537-566.
doi: 10.1002/cpa.3160100406. |
[16] |
Research in Appl. Math., 32, Wiely/Masson, 1994. |
[17] |
J. Math. Pures Appl., 91 (2009), 553-568.
doi: 10.1016/j.matpur.2009.01.008. |
[18] |
Comm. Partial Diff. Equations, 19 (1994), 1263-1317.
doi: 10.1080/03605309408821055. |
[19] |
Proc. Am. Math. Soc., 132 (2004), 1095-1102.
doi: 10.1090/S0002-9939-03-07246-0. |
[20] |
Math. Meth. Appl. Sci., 30 (2007), 479-500.
doi: 10.1002/mma.797. |
[21] |
Comm. Pure Appl. Math., 30 (1977), 767-796.
doi: 10.1002/cpa.3160300605. |
[22] |
Appl. Math. Letters, 11 (1998), 75-78.
doi: 10.1016/S0893-9659(98)00083-4. |
[23] |
Nonlinearity, 20 (2007), 1927-1953.
doi: 10.1088/0951-7715/20/8/007. |
[24] |
J. Math. Phys., 52 (2011), 053702 (23 pages).
doi: 10.1063/1.3591133. |
[25] |
in IMA Vol. Math. Appl., 29, Springer, New York, (1991), 315-333.
doi: 10.1007/978-1-4613-9121-0_24. |
[26] |
Diderot, Paris, 1996. |
[27] |
Arch. Rat. Mech. Anal., 172 (2004), 309-331.
doi: 10.1007/s00205-003-0303-4. |
[28] |
Mém. Soc. Math. France, 56 (1994), 125pp. |
[29] |
Dolk. Akad. Nauk SSSR, 282 (1985), 534-537. |
[30] |
Izv. Akad. Nauk SSSR Ser. Mat., 54 (1990), 1048-1068; translation in Math. USSR-Izv., 37 (1991), 397-419. |
[31] |
J. Diff. Eqs., 68 (1987), 118-136.
doi: 10.1016/0022-0396(87)90188-4. |
[1] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[2] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021099 |
[3] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[4] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[5] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[6] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[7] |
Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021056 |
[8] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[9] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[10] |
Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 |
[11] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[12] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[13] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[14] |
Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243 |
[15] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[16] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003 |
[17] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007 |
[18] |
Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235 |
[19] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[20] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]