• Previous Article
    Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities
  • DCDS Home
  • This Issue
  • Next Article
    On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models
August  2015, 35(8): 3683-3706. doi: 10.3934/dcds.2015.35.3683

Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type

1. 

Clermont Université, Université Blaise Pascal, 63000 Clermont-Ferrand, France

2. 

Department of Mathematics, College of Sciences, Hohai University, Nanjing 210098, China

Received  February 2014 Revised  December 2014 Published  February 2015

We study linearly degenerate hyperbolic systems of rich type in one space dimension. It is showed that such a system admits exact traveling wave solutions after a finite time, provided that the initial data are Riemann type outside a space interval. We prove the convergence of entropy solutions toward traveling waves in the $L^1$ norm as the time goes to infinity. The traveling waves are determined explicitly in terms of the initial data and the system. We also obtain the stability of entropy solutions in $L^1$. Applications concern physical models such as the generalized extremal surface equations, the Born-Infeld system and augmented Born-Infeld system.
Citation: Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683
References:
[1]

SIAM J. Math. Anal., 33 (2001), 959-981. doi: 10.1137/S0036141000377900.  Google Scholar

[2]

Trans. Amer. Math. Soc., 350 (1998), 2847-2870. doi: 10.1090/S0002-9947-98-02204-1.  Google Scholar

[3]

Proceedings of the International Congress of Mathematicians, 3, Higher Education Press, Beijing, (2002), 761-772.  Google Scholar

[4]

Arch. Rat. Mech. Anal., 172 (2004), 65-91. doi: 10.1007/s00205-003-0291-4.  Google Scholar

[5]

Oxford Lecture Series in Math. and its Applications, 20. Oxford University Press, Oxford, 2000.  Google Scholar

[6]

Masson, Paris, 1993.  Google Scholar

[7]

J. Math. Phys., 44 (2003), 6132-6139. doi: 10.1063/1.1621057.  Google Scholar

[8]

Arch. Rational Mech. Anal., 121 (1992), 131-185. doi: 10.1007/BF00375416.  Google Scholar

[9]

Comm. Pure Appl. Math., 18 (1965), 695-715. doi: 10.1002/cpa.3160180408.  Google Scholar

[10]

Amer. Math. Soc., Providence, R.I. 1970.  Google Scholar

[11]

Pitcher Lectures in Math. Sciences, Lehigh University, Amer. Math. Soc., 1990.  Google Scholar

[12]

Mat. Sbornik (N.S.), 81 (1970), 228-255.  Google Scholar

[13]

J. Math. Phys., 47 (2006), 013503, 16 pages. doi: 10.1063/1.2158435.  Google Scholar

[14]

Comm. Part. Diff. Eqs., 28 (2003), 1203-1220. doi: 10.1081/PDE-120021192.  Google Scholar

[15]

Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406.  Google Scholar

[16]

Research in Appl. Math., 32, Wiely/Masson, 1994.  Google Scholar

[17]

J. Math. Pures Appl., 91 (2009), 553-568. doi: 10.1016/j.matpur.2009.01.008.  Google Scholar

[18]

Comm. Partial Diff. Equations, 19 (1994), 1263-1317. doi: 10.1080/03605309408821055.  Google Scholar

[19]

Proc. Am. Math. Soc., 132 (2004), 1095-1102. doi: 10.1090/S0002-9939-03-07246-0.  Google Scholar

[20]

Math. Meth. Appl. Sci., 30 (2007), 479-500. doi: 10.1002/mma.797.  Google Scholar

[21]

Comm. Pure Appl. Math., 30 (1977), 767-796. doi: 10.1002/cpa.3160300605.  Google Scholar

[22]

Appl. Math. Letters, 11 (1998), 75-78. doi: 10.1016/S0893-9659(98)00083-4.  Google Scholar

[23]

Nonlinearity, 20 (2007), 1927-1953. doi: 10.1088/0951-7715/20/8/007.  Google Scholar

[24]

J. Math. Phys., 52 (2011), 053702 (23 pages). doi: 10.1063/1.3591133.  Google Scholar

[25]

in IMA Vol. Math. Appl., 29, Springer, New York, (1991), 315-333. doi: 10.1007/978-1-4613-9121-0_24.  Google Scholar

[26]

Diderot, Paris, 1996.  Google Scholar

[27]

Arch. Rat. Mech. Anal., 172 (2004), 309-331. doi: 10.1007/s00205-003-0303-4.  Google Scholar

[28]

Mém. Soc. Math. France, 56 (1994), 125pp.  Google Scholar

[29]

Dolk. Akad. Nauk SSSR, 282 (1985), 534-537.  Google Scholar

[30]

Izv. Akad. Nauk SSSR Ser. Mat., 54 (1990), 1048-1068; translation in Math. USSR-Izv., 37 (1991), 397-419.  Google Scholar

[31]

J. Diff. Eqs., 68 (1987), 118-136. doi: 10.1016/0022-0396(87)90188-4.  Google Scholar

show all references

References:
[1]

SIAM J. Math. Anal., 33 (2001), 959-981. doi: 10.1137/S0036141000377900.  Google Scholar

[2]

Trans. Amer. Math. Soc., 350 (1998), 2847-2870. doi: 10.1090/S0002-9947-98-02204-1.  Google Scholar

[3]

Proceedings of the International Congress of Mathematicians, 3, Higher Education Press, Beijing, (2002), 761-772.  Google Scholar

[4]

Arch. Rat. Mech. Anal., 172 (2004), 65-91. doi: 10.1007/s00205-003-0291-4.  Google Scholar

[5]

Oxford Lecture Series in Math. and its Applications, 20. Oxford University Press, Oxford, 2000.  Google Scholar

[6]

Masson, Paris, 1993.  Google Scholar

[7]

J. Math. Phys., 44 (2003), 6132-6139. doi: 10.1063/1.1621057.  Google Scholar

[8]

Arch. Rational Mech. Anal., 121 (1992), 131-185. doi: 10.1007/BF00375416.  Google Scholar

[9]

Comm. Pure Appl. Math., 18 (1965), 695-715. doi: 10.1002/cpa.3160180408.  Google Scholar

[10]

Amer. Math. Soc., Providence, R.I. 1970.  Google Scholar

[11]

Pitcher Lectures in Math. Sciences, Lehigh University, Amer. Math. Soc., 1990.  Google Scholar

[12]

Mat. Sbornik (N.S.), 81 (1970), 228-255.  Google Scholar

[13]

J. Math. Phys., 47 (2006), 013503, 16 pages. doi: 10.1063/1.2158435.  Google Scholar

[14]

Comm. Part. Diff. Eqs., 28 (2003), 1203-1220. doi: 10.1081/PDE-120021192.  Google Scholar

[15]

Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406.  Google Scholar

[16]

Research in Appl. Math., 32, Wiely/Masson, 1994.  Google Scholar

[17]

J. Math. Pures Appl., 91 (2009), 553-568. doi: 10.1016/j.matpur.2009.01.008.  Google Scholar

[18]

Comm. Partial Diff. Equations, 19 (1994), 1263-1317. doi: 10.1080/03605309408821055.  Google Scholar

[19]

Proc. Am. Math. Soc., 132 (2004), 1095-1102. doi: 10.1090/S0002-9939-03-07246-0.  Google Scholar

[20]

Math. Meth. Appl. Sci., 30 (2007), 479-500. doi: 10.1002/mma.797.  Google Scholar

[21]

Comm. Pure Appl. Math., 30 (1977), 767-796. doi: 10.1002/cpa.3160300605.  Google Scholar

[22]

Appl. Math. Letters, 11 (1998), 75-78. doi: 10.1016/S0893-9659(98)00083-4.  Google Scholar

[23]

Nonlinearity, 20 (2007), 1927-1953. doi: 10.1088/0951-7715/20/8/007.  Google Scholar

[24]

J. Math. Phys., 52 (2011), 053702 (23 pages). doi: 10.1063/1.3591133.  Google Scholar

[25]

in IMA Vol. Math. Appl., 29, Springer, New York, (1991), 315-333. doi: 10.1007/978-1-4613-9121-0_24.  Google Scholar

[26]

Diderot, Paris, 1996.  Google Scholar

[27]

Arch. Rat. Mech. Anal., 172 (2004), 309-331. doi: 10.1007/s00205-003-0303-4.  Google Scholar

[28]

Mém. Soc. Math. France, 56 (1994), 125pp.  Google Scholar

[29]

Dolk. Akad. Nauk SSSR, 282 (1985), 534-537.  Google Scholar

[30]

Izv. Akad. Nauk SSSR Ser. Mat., 54 (1990), 1048-1068; translation in Math. USSR-Izv., 37 (1991), 397-419.  Google Scholar

[31]

J. Diff. Eqs., 68 (1987), 118-136. doi: 10.1016/0022-0396(87)90188-4.  Google Scholar

[1]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[2]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[3]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[4]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[5]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[6]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[7]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021056

[8]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[9]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[10]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[11]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[14]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[15]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[16]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[17]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[18]

Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235

[19]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[20]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]