• Previous Article
    Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems
  • DCDS Home
  • This Issue
  • Next Article
    Global attractor for weakly damped gKdV equations in higher sobolev spaces
August  2015, 35(8): 3771-3797. doi: 10.3934/dcds.2015.35.3771

Concentrating solutions for an anisotropic elliptic problem with large exponent

1. 

Department of mathematics, East China Normal University, 500 Dong Chuan Road, Shanghai 200241

2. 

IECL, UMR 7502, Département de Mathématiques, Université de Lorraine, Bât. A, Ile de Saulcy, 57045 Metz Cedex 1, France

Received  September 2014 Revised  October 2014 Published  February 2015

We consider the following anisotropic boundary value problem $$\nabla (a(x)\nabla u) + a(x)u^p = 0, \;\; u>0 \ \ \mbox{in} \ \Omega, \quad u = 0 \ \ \mbox{on} \ \partial\Omega,$$ where $\Omega \subset \mathbb{R}^2$ is a bounded smooth domain, $p$ is a large exponent and $a(x)$ is a positive smooth function. We investigate the effect of anisotropic coefficient $a(x)$ on the existence of concentrating solutions. We show that at a given strict local maximum point of $a(x)$, there exist arbitrarily many concentrating solutions.
Citation: Liping Wang, Dong Ye. Concentrating solutions for an anisotropic elliptic problem with large exponent. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3771-3797. doi: 10.3934/dcds.2015.35.3771
References:
[1]

Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013. doi: 10.1090/S0002-9939-03-07301-5. Google Scholar

[2]

T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère equations,, Springer-Verlag, (1982). doi: 10.1007/978-1-4612-5734-9. Google Scholar

[3]

A. Bahri, Y. Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity,, Calc. Var. Partial Differential Equations, 3 (1995), 67. doi: 10.1007/BF01190892. Google Scholar

[4]

P. Bates, E. N. Dancer and J. Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability,, Adv. Diff. Equations, 4 (1999), 1. Google Scholar

[5]

D. Chae and O. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory,, Comm. Math. Phys., 215 (2000), 119. doi: 10.1007/s002200000302. Google Scholar

[6]

C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces,, Comm. Pure Appl. Math. 55 (2002), 55 (2002), 728. doi: 10.1002/cpa.3014. Google Scholar

[7]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar

[8]

E. N. Dancer and S. Yan, Multipeak solutions for a singular perturbed Neumann problem,, Pacific J. Math., 189 (1999), 241. doi: 10.2140/pjm.1999.189.241. Google Scholar

[9]

M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem,, Calc. Var. Partial Differential Equations, 16 (2003), 113. doi: 10.1007/s005260100142. Google Scholar

[10]

M. del Pino, M. Kowalczyk and M. Musso, Singular limits in Liouville-type equations,, Calc. Var. Partial Differential Equations, 24 (2005), 47. doi: 10.1007/s00526-004-0314-5. Google Scholar

[11]

P. Esposito, M. Grossi and A. Pistoia, On the existence of blowing-up solutions for a mean field equation,, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 22 (2005), 227. doi: 10.1016/j.anihpc.2004.12.001. Google Scholar

[12]

P. Esposito, M. Musso and A. Pistoia, Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent,, J. Diff. Eqns., 227 (2006), 29. doi: 10.1016/j.jde.2006.01.023. Google Scholar

[13]

P. Esposito, M. Musso and A. Pistoia, On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity,, Proc. Lond. math. Soc., 94 (2007), 497. doi: 10.1112/plms/pdl020. Google Scholar

[14]

P. Esposito, A. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in $\mathbbR^2$,, J. Anal. Math., 100 (2006), 249. doi: 10.1007/BF02916763. Google Scholar

[15]

M. Flucher and J. Wei, Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots,, Manuscripta Math., 94 (1997), 337. doi: 10.1007/BF02677858. Google Scholar

[16]

I. M. Gelfand, Some problems in the theory of quasilinear equations,, Amer. Math. Soc. Transl., 29 (1963), 295. Google Scholar

[17]

Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent,, Ann. Inst. H. Poincaré Analyse Non Linéaire, 8 (1991), 159. Google Scholar

[18]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,, Arch. Rat. Mech. Anal., 49 (1973), 241. Google Scholar

[19]

S. Khenissy, Y. Rébaï and D. Ye, Expansion of the Green's function for divergence form operators,, C. R. Math. Acad. Sci. Paris, 348 (2010), 891. doi: 10.1016/j.crma.2010.06.024. Google Scholar

[20]

L. Ma and J. Wei, Convergence for a Liouville equation,, Comm. Math. Helv., 76 (2001), 506. doi: 10.1007/PL00013216. Google Scholar

[21]

K. El Mehdi and M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two,, Adv. Nonlineat Stud., 4 (2004), 15. Google Scholar

[22]

F. Mignot, F. Murat and J. P. Puel, Variation d'un point retourment par rapport au domaine,, Comm. Part. Diff. Equations, 4 (1979), 1263. doi: 10.1080/03605307908820128. Google Scholar

[23]

X. Ren and J. Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity,, Trans. Amer. Math. Soc., 343 (1994), 749. doi: 10.1090/S0002-9947-1994-1232190-7. Google Scholar

[24]

X. Ren and J. Wei, Singular point condensation and least energy solutions,, Proc. Amer. Math. Soc., 124 (1996), 111. doi: 10.1090/S0002-9939-96-03156-5. Google Scholar

[25]

O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent,, J. Funct. Anal., 89 (1990), 1. doi: 10.1016/0022-1236(90)90002-3. Google Scholar

[26]

O. Rey, A multiplicity result for a variational problem with lack of compactness,, Nonlinear Anal., 13 (1989), 1241. doi: 10.1016/0362-546X(89)90009-6. Google Scholar

[27]

J. Wei, D. Ye and F. Zhou, Bubbling slutions for an anisotropic Emden-Fowler equation,, Calc. Var. Partial Differential Equations, 28 (2007), 217. doi: 10.1007/s00526-006-0044-y. Google Scholar

[28]

D. Ye, Une remarque sur le comportement asymptotique des solutions de $- \Delta u = \lambda f(u)$,, Comp. Rend. Acad. Sci. Paris, 325 (1997), 1279. doi: 10.1016/S0764-4442(97)82353-1. Google Scholar

show all references

References:
[1]

Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013. doi: 10.1090/S0002-9939-03-07301-5. Google Scholar

[2]

T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère equations,, Springer-Verlag, (1982). doi: 10.1007/978-1-4612-5734-9. Google Scholar

[3]

A. Bahri, Y. Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity,, Calc. Var. Partial Differential Equations, 3 (1995), 67. doi: 10.1007/BF01190892. Google Scholar

[4]

P. Bates, E. N. Dancer and J. Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability,, Adv. Diff. Equations, 4 (1999), 1. Google Scholar

[5]

D. Chae and O. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory,, Comm. Math. Phys., 215 (2000), 119. doi: 10.1007/s002200000302. Google Scholar

[6]

C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces,, Comm. Pure Appl. Math. 55 (2002), 55 (2002), 728. doi: 10.1002/cpa.3014. Google Scholar

[7]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar

[8]

E. N. Dancer and S. Yan, Multipeak solutions for a singular perturbed Neumann problem,, Pacific J. Math., 189 (1999), 241. doi: 10.2140/pjm.1999.189.241. Google Scholar

[9]

M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem,, Calc. Var. Partial Differential Equations, 16 (2003), 113. doi: 10.1007/s005260100142. Google Scholar

[10]

M. del Pino, M. Kowalczyk and M. Musso, Singular limits in Liouville-type equations,, Calc. Var. Partial Differential Equations, 24 (2005), 47. doi: 10.1007/s00526-004-0314-5. Google Scholar

[11]

P. Esposito, M. Grossi and A. Pistoia, On the existence of blowing-up solutions for a mean field equation,, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 22 (2005), 227. doi: 10.1016/j.anihpc.2004.12.001. Google Scholar

[12]

P. Esposito, M. Musso and A. Pistoia, Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent,, J. Diff. Eqns., 227 (2006), 29. doi: 10.1016/j.jde.2006.01.023. Google Scholar

[13]

P. Esposito, M. Musso and A. Pistoia, On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity,, Proc. Lond. math. Soc., 94 (2007), 497. doi: 10.1112/plms/pdl020. Google Scholar

[14]

P. Esposito, A. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in $\mathbbR^2$,, J. Anal. Math., 100 (2006), 249. doi: 10.1007/BF02916763. Google Scholar

[15]

M. Flucher and J. Wei, Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots,, Manuscripta Math., 94 (1997), 337. doi: 10.1007/BF02677858. Google Scholar

[16]

I. M. Gelfand, Some problems in the theory of quasilinear equations,, Amer. Math. Soc. Transl., 29 (1963), 295. Google Scholar

[17]

Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent,, Ann. Inst. H. Poincaré Analyse Non Linéaire, 8 (1991), 159. Google Scholar

[18]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,, Arch. Rat. Mech. Anal., 49 (1973), 241. Google Scholar

[19]

S. Khenissy, Y. Rébaï and D. Ye, Expansion of the Green's function for divergence form operators,, C. R. Math. Acad. Sci. Paris, 348 (2010), 891. doi: 10.1016/j.crma.2010.06.024. Google Scholar

[20]

L. Ma and J. Wei, Convergence for a Liouville equation,, Comm. Math. Helv., 76 (2001), 506. doi: 10.1007/PL00013216. Google Scholar

[21]

K. El Mehdi and M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two,, Adv. Nonlineat Stud., 4 (2004), 15. Google Scholar

[22]

F. Mignot, F. Murat and J. P. Puel, Variation d'un point retourment par rapport au domaine,, Comm. Part. Diff. Equations, 4 (1979), 1263. doi: 10.1080/03605307908820128. Google Scholar

[23]

X. Ren and J. Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity,, Trans. Amer. Math. Soc., 343 (1994), 749. doi: 10.1090/S0002-9947-1994-1232190-7. Google Scholar

[24]

X. Ren and J. Wei, Singular point condensation and least energy solutions,, Proc. Amer. Math. Soc., 124 (1996), 111. doi: 10.1090/S0002-9939-96-03156-5. Google Scholar

[25]

O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent,, J. Funct. Anal., 89 (1990), 1. doi: 10.1016/0022-1236(90)90002-3. Google Scholar

[26]

O. Rey, A multiplicity result for a variational problem with lack of compactness,, Nonlinear Anal., 13 (1989), 1241. doi: 10.1016/0362-546X(89)90009-6. Google Scholar

[27]

J. Wei, D. Ye and F. Zhou, Bubbling slutions for an anisotropic Emden-Fowler equation,, Calc. Var. Partial Differential Equations, 28 (2007), 217. doi: 10.1007/s00526-006-0044-y. Google Scholar

[28]

D. Ye, Une remarque sur le comportement asymptotique des solutions de $- \Delta u = \lambda f(u)$,, Comp. Rend. Acad. Sci. Paris, 325 (1997), 1279. doi: 10.1016/S0764-4442(97)82353-1. Google Scholar

[1]

Liping Wang, Juncheng Wei. Solutions with interior bubble and boundary layer for an elliptic problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 333-351. doi: 10.3934/dcds.2008.21.333

[2]

Zhongyuan Liu. Nodal Bubble-Tower Solutions for a semilinear elliptic problem with competing powers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5299-5317. doi: 10.3934/dcds.2017230

[3]

Haitao Yang. On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in $R^n$. Communications on Pure & Applied Analysis, 2005, 4 (1) : 187-198. doi: 10.3934/cpaa.2005.4.197

[4]

Andrés Contreras, Manuel del Pino. Nodal bubble-tower solutions to radial elliptic problems near criticality. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 525-539. doi: 10.3934/dcds.2006.16.525

[5]

Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751

[6]

M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure & Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233

[7]

Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095

[8]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[9]

Zhongyuan Liu. Concentration of solutions for the fractional Nirenberg problem. Communications on Pure & Applied Analysis, 2016, 15 (2) : 563-576. doi: 10.3934/cpaa.2016.15.563

[10]

Shuangjie Peng, Jing Zhou. Concentration of solutions for a Paneitz type problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1055-1072. doi: 10.3934/dcds.2010.26.1055

[11]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[12]

Agnese Di Castro, Mayte Pérez-Llanos, José Miguel Urbano. Limits of anisotropic and degenerate elliptic problems. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1217-1229. doi: 10.3934/cpaa.2012.11.1217

[13]

Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599

[14]

Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111

[15]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[16]

Zongming Guo, Long Wei. A perturbed fourth order elliptic equation with negative exponent. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4187-4205. doi: 10.3934/dcdsb.2018132

[17]

Gabriele Cora, Alessandro Iacopetti. Sign-changing bubble-tower solutions to fractional semilinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6149-6173. doi: 10.3934/dcds.2019268

[18]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[19]

Hongwei Lou, Xueyuan Yin. Minimization of the elliptic higher eigenvalues for multiphase anisotropic conductors. Mathematical Control & Related Fields, 2018, 8 (3&4) : 855-877. doi: 10.3934/mcrf.2018038

[20]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]