Citation: |
[1] |
A. Bounemoura and J.-P. Marco, Improved exponential stability for near-integrable quasi-convex Hamiltonians, Nonlinearity, 24 (2011), 97-112.doi: 10.1088/0951-7715/24/1/005. |
[2] |
A. Córdoba, D. Córdoba and M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Annals of Mathematics, 162 (2005), 1377-1389.doi: 10.4007/annals.2005.162.1377. |
[3] |
J. Féjoz, M. Guardia, V. Kaloshin and P. Raldan, Kirkwood gaps and diffusion along mean motion resonance in the restricted planar three-body problem, http://arxiv.org/abs/1109.2892. |
[4] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Inventiones Math., 167 (2007), 445-453.doi: 10.1007/s00222-006-0020-3. |
[5] |
P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Mathematical Surveys, 47 (1992), 57-133.doi: 10.1070/RM1992v047n06ABEH000965. |
[6] |
P. Lochak, Simultaneous Diophantine approximation in classical perturbation theory: Why and what for? Progress in nonlinear science., 1 RAS, Inst. Appl. Phys., Nizhnii (Novgorod, (2002), 116-138. |
[7] |
P. Lochak and A. I. Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2 (1992), 495-499.doi: 10.1063/1.165891. |
[8] |
P. Lochak, A. I. Neishtadt and L. Niederman, Stability of nearly integrable convex Hamiltonian systems over exponentially long times. Kuksin, S. (ed.) et al., Seminar on dynamical systems. Basel: Birkhäuser. Prog. Nonlinear Diff. Equ. Appl. 12 (1994), 15-34. |
[9] |
L. Niederman, Stability over exponentially long times in the planetary problem, Nonlinearity, 9 (1996), 1703-1751.doi: 10.1088/0951-7715/9/6/017. |
[10] |
N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russ. Math. Surv., 32 (1977), 5-66, 287. |
[11] |
J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Mathematische Zeitschrift, 213 (1993), 187-216.doi: 10.1007/BF03025718. |
[12] |
A. Pronin and D. Treschev, Continuous averaging in multi-frequency slow-fast systems, Regular and Chaotic Dynamics, 5 (2000), 157-170.doi: 10.1070/rd2000v005n02ABEH000138. |
[13] |
D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010.doi: 10.1007/978-3-642-03028-4. |
[14] |
D. V. Treschev, The continuous averaging method in the problem of separation of fast and slow motions, Regular and Chaotic Dynamics, 2 (1997), 9-20. |
[15] |
D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point, Russian J. Math. Phys., 5 (1997), 63-98. |