-
Previous Article
Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold
- DCDS Home
- This Issue
-
Next Article
Global attractor for weakly damped gKdV equations in higher sobolev spaces
Continuous averaging proof of the Nekhoroshev theorem
1. | Department of mathematics, the University of Chicago, Chicago, IL, 60637, United States |
References:
[1] |
A. Bounemoura and J.-P. Marco, Improved exponential stability for near-integrable quasi-convex Hamiltonians, Nonlinearity, 24 (2011), 97-112.
doi: 10.1088/0951-7715/24/1/005. |
[2] |
A. Córdoba, D. Córdoba and M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Annals of Mathematics, 162 (2005), 1377-1389.
doi: 10.4007/annals.2005.162.1377. |
[3] |
J. Féjoz, M. Guardia, V. Kaloshin and P. Raldan, Kirkwood gaps and diffusion along mean motion resonance in the restricted planar three-body problem,, , ().
|
[4] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Inventiones Math., 167 (2007), 445-453.
doi: 10.1007/s00222-006-0020-3. |
[5] |
P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Mathematical Surveys, 47 (1992), 57-133.
doi: 10.1070/RM1992v047n06ABEH000965. |
[6] |
P. Lochak, Simultaneous Diophantine approximation in classical perturbation theory: Why and what for? Progress in nonlinear science., 1 RAS, Inst. Appl. Phys., Nizhnii (Novgorod, (2002), 116-138. |
[7] |
P. Lochak and A. I. Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2 (1992), 495-499.
doi: 10.1063/1.165891. |
[8] |
P. Lochak, A. I. Neishtadt and L. Niederman, Stability of nearly integrable convex Hamiltonian systems over exponentially long times. Kuksin, S. (ed.) et al., Seminar on dynamical systems. Basel: Birkhäuser. Prog. Nonlinear Diff. Equ. Appl. 12 (1994), 15-34. |
[9] |
L. Niederman, Stability over exponentially long times in the planetary problem, Nonlinearity, 9 (1996), 1703-1751.
doi: 10.1088/0951-7715/9/6/017. |
[10] |
N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russ. Math. Surv., 32 (1977), 5-66, 287. |
[11] |
J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Mathematische Zeitschrift, 213 (1993), 187-216.
doi: 10.1007/BF03025718. |
[12] |
A. Pronin and D. Treschev, Continuous averaging in multi-frequency slow-fast systems, Regular and Chaotic Dynamics, 5 (2000), 157-170.
doi: 10.1070/rd2000v005n02ABEH000138. |
[13] |
D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-03028-4. |
[14] |
D. V. Treschev, The continuous averaging method in the problem of separation of fast and slow motions, Regular and Chaotic Dynamics, 2 (1997), 9-20. |
[15] |
D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point, Russian J. Math. Phys., 5 (1997), 63-98. |
show all references
References:
[1] |
A. Bounemoura and J.-P. Marco, Improved exponential stability for near-integrable quasi-convex Hamiltonians, Nonlinearity, 24 (2011), 97-112.
doi: 10.1088/0951-7715/24/1/005. |
[2] |
A. Córdoba, D. Córdoba and M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Annals of Mathematics, 162 (2005), 1377-1389.
doi: 10.4007/annals.2005.162.1377. |
[3] |
J. Féjoz, M. Guardia, V. Kaloshin and P. Raldan, Kirkwood gaps and diffusion along mean motion resonance in the restricted planar three-body problem,, , ().
|
[4] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Inventiones Math., 167 (2007), 445-453.
doi: 10.1007/s00222-006-0020-3. |
[5] |
P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Mathematical Surveys, 47 (1992), 57-133.
doi: 10.1070/RM1992v047n06ABEH000965. |
[6] |
P. Lochak, Simultaneous Diophantine approximation in classical perturbation theory: Why and what for? Progress in nonlinear science., 1 RAS, Inst. Appl. Phys., Nizhnii (Novgorod, (2002), 116-138. |
[7] |
P. Lochak and A. I. Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2 (1992), 495-499.
doi: 10.1063/1.165891. |
[8] |
P. Lochak, A. I. Neishtadt and L. Niederman, Stability of nearly integrable convex Hamiltonian systems over exponentially long times. Kuksin, S. (ed.) et al., Seminar on dynamical systems. Basel: Birkhäuser. Prog. Nonlinear Diff. Equ. Appl. 12 (1994), 15-34. |
[9] |
L. Niederman, Stability over exponentially long times in the planetary problem, Nonlinearity, 9 (1996), 1703-1751.
doi: 10.1088/0951-7715/9/6/017. |
[10] |
N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russ. Math. Surv., 32 (1977), 5-66, 287. |
[11] |
J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Mathematische Zeitschrift, 213 (1993), 187-216.
doi: 10.1007/BF03025718. |
[12] |
A. Pronin and D. Treschev, Continuous averaging in multi-frequency slow-fast systems, Regular and Chaotic Dynamics, 5 (2000), 157-170.
doi: 10.1070/rd2000v005n02ABEH000138. |
[13] |
D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-03028-4. |
[14] |
D. V. Treschev, The continuous averaging method in the problem of separation of fast and slow motions, Regular and Chaotic Dynamics, 2 (1997), 9-20. |
[15] |
D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point, Russian J. Math. Phys., 5 (1997), 63-98. |
[1] |
Paolo Perfetti. A Nekhoroshev theorem for some infinite--dimensional systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 125-146. doi: 10.3934/cpaa.2006.5.125 |
[2] |
Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020 |
[3] |
Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 |
[4] |
Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215 |
[5] |
Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1 |
[6] |
Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259 |
[7] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[8] |
Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51 |
[9] |
Janusz Mierczyński. Averaging in random systems of nonnegative matrices. Conference Publications, 2015, 2015 (special) : 835-840. doi: 10.3934/proc.2015.0835 |
[10] |
Guan Huang. An averaging theorem for nonlinear Schrödinger equations with small nonlinearities. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3555-3574. doi: 10.3934/dcds.2014.34.3555 |
[11] |
Mickael Chekroun, Michael Ghil, Jean Roux, Ferenc Varadi. Averaging of time - periodic systems without a small parameter. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 753-782. doi: 10.3934/dcds.2006.14.753 |
[12] |
Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181 |
[13] |
Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785 |
[14] |
Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i |
[15] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116 |
[16] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017 |
[17] |
Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201 |
[18] |
Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855 |
[19] |
Miguel Rodríguez-Olmos. Continuous singularities in hamiltonian relative equilibria with abelian momentum isotropy. Journal of Geometric Mechanics, 2020, 12 (3) : 525-540. doi: 10.3934/jgm.2020019 |
[20] |
D. P. Demuner, M. Federson, C. Gutierrez. The Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 495-509. doi: 10.3934/dcds.2009.25.495 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]