• Previous Article
    Value iteration convergence of $\epsilon$-monotone schemes for stationary Hamilton-Jacobi equations
  • DCDS Home
  • This Issue
  • Next Article
    State constrained $L^\infty$ optimal control problems interpreted as differential games
September  2015, 35(9): 4019-4039. doi: 10.3934/dcds.2015.35.4019

Computation of Lyapunov functions for systems with multiple local attractors

1. 

School of Science and Engineering, Reykjavik University, Menntavegi 1, Reykjavik, IS-101, Iceland, Iceland

2. 

Department of Mathematics, University of Sussex, Falmer BN1 9QH

3. 

School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales 2308, Australia

Received  June 2014 Revised  October 2014 Published  April 2015

We present a novel method to compute Lyapunov functions for continuous-time systems with multiple local attractors. In the proposed method one first computes an outer approximation of the local attractors using a graph-theoretic approach. Then a candidate Lyapunov function is computed using a Massera-like construction adapted to multiple local attractors. In the final step this candidate Lyapunov function is interpolated over the simplices of a simplicial complex and, by checking certain inequalities at the vertices of the complex, we can identify the region in which the Lyapunov function is decreasing along system trajectories. The resulting Lyapunov function gives information on the qualitative behavior of the dynamics, including lower bounds on the basins of attraction of the individual local attractors. We develop the theory in detail and present numerical examples demonstrating the applicability of our method.
Citation: Jóhann Björnsson, Peter Giesl, Sigurdur F. Hafstein, Christopher M. Kellett. Computation of Lyapunov functions for systems with multiple local attractors. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4019-4039. doi: 10.3934/dcds.2015.35.4019
References:
[1]

Discrete and Continuous Dynamical Systems Series B, 17 (2012), 33-56. doi: 10.3934/dcdsb.2012.17.33.  Google Scholar

[2]

Journal of Computational and Nonlinear Dynamics, 1 (2006), 312-319. doi: 10.1115/1.2338651.  Google Scholar

[3]

Journal of Logic and Computation, 21 (2011), 23-44. doi: 10.1093/logcom/exp003.  Google Scholar

[4]

in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands, (2014), 1181-1188 (no. 0180). Google Scholar

[5]

in Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, California, USA, (2014), 5506-5511. doi: 10.1109/CDC.2014.7040250.  Google Scholar

[6]

CBMS Regional Conference Series no. 38, American Mathematical Society, 1978.  Google Scholar

[7]

in Ergodic theory, analysis, and efficient simulation of dynamical systems, Springer, Berlin, (2001), 145-174, 805-807.  Google Scholar

[8]

no. 1904 in Lecture Notes in Mathematics, Springer, 2007.  Google Scholar

[9]

Journal of Mathematical Analysis and Applications, 388 (2012), 463-479. doi: 10.1016/j.jmaa.2011.10.047.  Google Scholar

[10]

Journal of Mathematical Analysis and Applications, 410 (2014), 292-306. doi: 10.1016/j.jmaa.2013.08.014.  Google Scholar

[11]

Electronic Journal of Differential Equations Mongraphs, 2007. Google Scholar

[12]

in Proceedings of the 2014 American Control Conference, Portland, Oregon, USA, (2014), 548-553 (no. 0170). doi: 10.1109/ACC.2014.6858660.  Google Scholar

[13]

Proc. Amer. Math. Soc., 126 (1998), 245-256. doi: 10.1090/S0002-9939-98-04500-6.  Google Scholar

[14]

PhD thesis at the University of Paderborn, Germany, Shaker, 2000. Google Scholar

[15]

Foundations of Computational Mathematics, 5 (2005), 409-449. doi: 10.1007/s10208-004-0163-9.  Google Scholar

[16]

Dynamical Systems, 17 (2002), 137-150. doi: 10.1080/0268111011011847.  Google Scholar

[17]

PhD thesis, Gerhard-Mercator-University, Duisburg, Germany, 2002. Google Scholar

[18]

Annals of Mathematics, 50 (1949), 705-721. doi: 10.2307/1969558.  Google Scholar

[19]

Comment. Math. Univ. Carolinae, 36 (1995), 585-597.  Google Scholar

[20]

in Proceedings of the 41st IEEE Conference on Decision and Control, 3, Las Vegas, Nevada, USA, (2002), 3482-3487. doi: 10.1109/CDC.2002.1184414.  Google Scholar

[21]

Far East Journal of Dynamical Systems, 17 (2011), 49-54.  Google Scholar

[22]

in Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, Georgia, USA, (2010), 5949-5954. doi: 10.1109/CDC.2010.5717536.  Google Scholar

[23]

SIAM J. Control and Optimization, 48 (2010), 4377-4394. doi: 10.1137/090749955.  Google Scholar

[24]

SIAM J. Comput., 1 (1972), 146-160. doi: 10.1137/0201010.  Google Scholar

[25]

ESAIM Control Optim. Calc. Var., 5 (2000), 313-367. doi: 10.1051/cocv:2000113.  Google Scholar

[26]

Found. Comput. Math., 2 (2002), 53-117. doi: 10.1007/s002080010018.  Google Scholar

[27]

Memoirs of the College of Science, University of Kyoto, Series A: Mathematics, 29 (1955), 27-33.  Google Scholar

show all references

References:
[1]

Discrete and Continuous Dynamical Systems Series B, 17 (2012), 33-56. doi: 10.3934/dcdsb.2012.17.33.  Google Scholar

[2]

Journal of Computational and Nonlinear Dynamics, 1 (2006), 312-319. doi: 10.1115/1.2338651.  Google Scholar

[3]

Journal of Logic and Computation, 21 (2011), 23-44. doi: 10.1093/logcom/exp003.  Google Scholar

[4]

in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands, (2014), 1181-1188 (no. 0180). Google Scholar

[5]

in Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, California, USA, (2014), 5506-5511. doi: 10.1109/CDC.2014.7040250.  Google Scholar

[6]

CBMS Regional Conference Series no. 38, American Mathematical Society, 1978.  Google Scholar

[7]

in Ergodic theory, analysis, and efficient simulation of dynamical systems, Springer, Berlin, (2001), 145-174, 805-807.  Google Scholar

[8]

no. 1904 in Lecture Notes in Mathematics, Springer, 2007.  Google Scholar

[9]

Journal of Mathematical Analysis and Applications, 388 (2012), 463-479. doi: 10.1016/j.jmaa.2011.10.047.  Google Scholar

[10]

Journal of Mathematical Analysis and Applications, 410 (2014), 292-306. doi: 10.1016/j.jmaa.2013.08.014.  Google Scholar

[11]

Electronic Journal of Differential Equations Mongraphs, 2007. Google Scholar

[12]

in Proceedings of the 2014 American Control Conference, Portland, Oregon, USA, (2014), 548-553 (no. 0170). doi: 10.1109/ACC.2014.6858660.  Google Scholar

[13]

Proc. Amer. Math. Soc., 126 (1998), 245-256. doi: 10.1090/S0002-9939-98-04500-6.  Google Scholar

[14]

PhD thesis at the University of Paderborn, Germany, Shaker, 2000. Google Scholar

[15]

Foundations of Computational Mathematics, 5 (2005), 409-449. doi: 10.1007/s10208-004-0163-9.  Google Scholar

[16]

Dynamical Systems, 17 (2002), 137-150. doi: 10.1080/0268111011011847.  Google Scholar

[17]

PhD thesis, Gerhard-Mercator-University, Duisburg, Germany, 2002. Google Scholar

[18]

Annals of Mathematics, 50 (1949), 705-721. doi: 10.2307/1969558.  Google Scholar

[19]

Comment. Math. Univ. Carolinae, 36 (1995), 585-597.  Google Scholar

[20]

in Proceedings of the 41st IEEE Conference on Decision and Control, 3, Las Vegas, Nevada, USA, (2002), 3482-3487. doi: 10.1109/CDC.2002.1184414.  Google Scholar

[21]

Far East Journal of Dynamical Systems, 17 (2011), 49-54.  Google Scholar

[22]

in Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, Georgia, USA, (2010), 5949-5954. doi: 10.1109/CDC.2010.5717536.  Google Scholar

[23]

SIAM J. Control and Optimization, 48 (2010), 4377-4394. doi: 10.1137/090749955.  Google Scholar

[24]

SIAM J. Comput., 1 (1972), 146-160. doi: 10.1137/0201010.  Google Scholar

[25]

ESAIM Control Optim. Calc. Var., 5 (2000), 313-367. doi: 10.1051/cocv:2000113.  Google Scholar

[26]

Found. Comput. Math., 2 (2002), 53-117. doi: 10.1007/s002080010018.  Google Scholar

[27]

Memoirs of the College of Science, University of Kyoto, Series A: Mathematics, 29 (1955), 27-33.  Google Scholar

[1]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[2]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[3]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[4]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[5]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[6]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[7]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[8]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[9]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[11]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021064

[14]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[15]

Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068

[16]

Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235

[17]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[18]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[19]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[20]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (14)

[Back to Top]