-
Previous Article
Value iteration convergence of $\epsilon$-monotone schemes for stationary Hamilton-Jacobi equations
- DCDS Home
- This Issue
-
Next Article
State constrained $L^\infty$ optimal control problems interpreted as differential games
Computation of Lyapunov functions for systems with multiple local attractors
1. | School of Science and Engineering, Reykjavik University, Menntavegi 1, Reykjavik, IS-101, Iceland, Iceland |
2. | Department of Mathematics, University of Sussex, Falmer BN1 9QH |
3. | School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales 2308, Australia |
References:
[1] |
R. Baier, L. Grüne and S. Hafstein, Linear programming based Lyapunov function computation for differential inclusions, Discrete and Continuous Dynamical Systems Series B, 17 (2012), 33-56.
doi: 10.3934/dcdsb.2012.17.33. |
[2] |
H. Ban and W. Kalies, A computational approach to Conley's decomposition theorem, Journal of Computational and Nonlinear Dynamics, 1 (2006), 312-319.
doi: 10.1115/1.2338651. |
[3] |
J. Barnat, J. Chaloupka and J. van de Pol, Distributed algorithms for SCC decomposition, Journal of Logic and Computation, 21 (2011), 23-44.
doi: 10.1093/logcom/exp003. |
[4] |
J. Björnsson, P. Giesl and S. Hafstein, Algorithmic verification of approximations to complete Lyapunov functions, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands, (2014), 1181-1188 (no. 0180). |
[5] |
J. Björnsson, P. Giesl, S. Hafstein, C. M. Kellett and H. Li, Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction, in Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, California, USA, (2014), 5506-5511.
doi: 10.1109/CDC.2014.7040250. |
[6] |
C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series no. 38, American Mathematical Society, 1978. |
[7] |
M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO-set oriented numerical methods for dynamical systems, in Ergodic theory, analysis, and efficient simulation of dynamical systems, Springer, Berlin, (2001), 145-174, 805-807. |
[8] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, no. 1904 in Lecture Notes in Mathematics, Springer, 2007. |
[9] |
P. Giesl and S. Hafstein, Construction of Lyapunov functions for nonlinear planar systems by linear programming, Journal of Mathematical Analysis and Applications, 388 (2012), 463-479.
doi: 10.1016/j.jmaa.2011.10.047. |
[10] |
P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems, Journal of Mathematical Analysis and Applications, 410 (2014), 292-306.
doi: 10.1016/j.jmaa.2013.08.014. |
[11] |
S. Hafstein, An Algorithm for Constructing Lyapunov Functions, Electronic Journal of Differential Equations Mongraphs, 2007. |
[12] |
S. Hafstein, C. M. Kellett and H. Li, Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction, in Proceedings of the 2014 American Control Conference, Portland, Oregon, USA, (2014), 548-553 (no. 0170).
doi: 10.1109/ACC.2014.6858660. |
[13] |
M. Hurley, Lyapunov functions and attractors in arbitrary metric spaces, Proc. Amer. Math. Soc., 126 (1998), 245-256.
doi: 10.1090/S0002-9939-98-04500-6. |
[14] |
O. Junge, Mengenorientierte Methoden zur Numerischen Analyse Dynamischer Systeme, PhD thesis at the University of Paderborn, Germany, Shaker, 2000. |
[15] |
W. Kalies, K. Mischaikow and R. VanderVorst, An algorithmic approach to chain recurrence, Foundations of Computational Mathematics, 5 (2005), 409-449.
doi: 10.1007/s10208-004-0163-9. |
[16] |
S. Marinosson, Lyapunov function construction for ordinary differential equations with linear programming, Dynamical Systems, 17 (2002), 137-150.
doi: 10.1080/0268111011011847. |
[17] |
S. Marinosson, Stability Analysis of Nonlinear Systems with Linear Programming: A Lyapunov Functions Based Approach, PhD thesis, Gerhard-Mercator-University, Duisburg, Germany, 2002. |
[18] |
J. L. Massera, On Liapounoff's conditions of stability, Annals of Mathematics, 50 (1949), 705-721.
doi: 10.2307/1969558. |
[19] |
D. Norton, The fundamental theorem of dynamical systems, Comment. Math. Univ. Carolinae, 36 (1995), 585-597. |
[20] |
A. Papachristodoulou and S. Prajna, The construction of Lyapunov functions using the sum of squares decomposition, in Proceedings of the 41st IEEE Conference on Decision and Control, 3, Las Vegas, Nevada, USA, (2002), 3482-3487.
doi: 10.1109/CDC.2002.1184414. |
[21] |
M. Patrao, Existence of complete Lyapunov functions for semiflows on separable metric spaces, Far East Journal of Dynamical Systems, 17 (2011), 49-54. |
[22] |
M. Peet and A. Papachristodoulou, A converse sum-of-squares Lyapunov result: An existence proof based on the Picard iteration, in Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, Georgia, USA, (2010), 5949-5954.
doi: 10.1109/CDC.2010.5717536. |
[23] |
S. Ratschan and Z. She, Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions, SIAM J. Control and Optimization, 48 (2010), 4377-4394.
doi: 10.1137/090749955. |
[24] |
R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), 146-160.
doi: 10.1137/0201010. |
[25] |
A. R. Teel and L. Praly, A smooth Lyapunov function from a class-$\mathcal{KL}$ estimate involving two positive semidefinite functions, ESAIM Control Optim. Calc. Var., 5 (2000), 313-367.
doi: 10.1051/cocv:2000113. |
[26] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.
doi: 10.1007/s002080010018. |
[27] |
T. Yoshizawa, On the stability of solutions of a system of differential equations, Memoirs of the College of Science, University of Kyoto, Series A: Mathematics, 29 (1955), 27-33. |
show all references
References:
[1] |
R. Baier, L. Grüne and S. Hafstein, Linear programming based Lyapunov function computation for differential inclusions, Discrete and Continuous Dynamical Systems Series B, 17 (2012), 33-56.
doi: 10.3934/dcdsb.2012.17.33. |
[2] |
H. Ban and W. Kalies, A computational approach to Conley's decomposition theorem, Journal of Computational and Nonlinear Dynamics, 1 (2006), 312-319.
doi: 10.1115/1.2338651. |
[3] |
J. Barnat, J. Chaloupka and J. van de Pol, Distributed algorithms for SCC decomposition, Journal of Logic and Computation, 21 (2011), 23-44.
doi: 10.1093/logcom/exp003. |
[4] |
J. Björnsson, P. Giesl and S. Hafstein, Algorithmic verification of approximations to complete Lyapunov functions, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands, (2014), 1181-1188 (no. 0180). |
[5] |
J. Björnsson, P. Giesl, S. Hafstein, C. M. Kellett and H. Li, Computation of continuous and piecewise affine Lyapunov functions by numerical approximations of the Massera construction, in Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, California, USA, (2014), 5506-5511.
doi: 10.1109/CDC.2014.7040250. |
[6] |
C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series no. 38, American Mathematical Society, 1978. |
[7] |
M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO-set oriented numerical methods for dynamical systems, in Ergodic theory, analysis, and efficient simulation of dynamical systems, Springer, Berlin, (2001), 145-174, 805-807. |
[8] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, no. 1904 in Lecture Notes in Mathematics, Springer, 2007. |
[9] |
P. Giesl and S. Hafstein, Construction of Lyapunov functions for nonlinear planar systems by linear programming, Journal of Mathematical Analysis and Applications, 388 (2012), 463-479.
doi: 10.1016/j.jmaa.2011.10.047. |
[10] |
P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems, Journal of Mathematical Analysis and Applications, 410 (2014), 292-306.
doi: 10.1016/j.jmaa.2013.08.014. |
[11] |
S. Hafstein, An Algorithm for Constructing Lyapunov Functions, Electronic Journal of Differential Equations Mongraphs, 2007. |
[12] |
S. Hafstein, C. M. Kellett and H. Li, Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction, in Proceedings of the 2014 American Control Conference, Portland, Oregon, USA, (2014), 548-553 (no. 0170).
doi: 10.1109/ACC.2014.6858660. |
[13] |
M. Hurley, Lyapunov functions and attractors in arbitrary metric spaces, Proc. Amer. Math. Soc., 126 (1998), 245-256.
doi: 10.1090/S0002-9939-98-04500-6. |
[14] |
O. Junge, Mengenorientierte Methoden zur Numerischen Analyse Dynamischer Systeme, PhD thesis at the University of Paderborn, Germany, Shaker, 2000. |
[15] |
W. Kalies, K. Mischaikow and R. VanderVorst, An algorithmic approach to chain recurrence, Foundations of Computational Mathematics, 5 (2005), 409-449.
doi: 10.1007/s10208-004-0163-9. |
[16] |
S. Marinosson, Lyapunov function construction for ordinary differential equations with linear programming, Dynamical Systems, 17 (2002), 137-150.
doi: 10.1080/0268111011011847. |
[17] |
S. Marinosson, Stability Analysis of Nonlinear Systems with Linear Programming: A Lyapunov Functions Based Approach, PhD thesis, Gerhard-Mercator-University, Duisburg, Germany, 2002. |
[18] |
J. L. Massera, On Liapounoff's conditions of stability, Annals of Mathematics, 50 (1949), 705-721.
doi: 10.2307/1969558. |
[19] |
D. Norton, The fundamental theorem of dynamical systems, Comment. Math. Univ. Carolinae, 36 (1995), 585-597. |
[20] |
A. Papachristodoulou and S. Prajna, The construction of Lyapunov functions using the sum of squares decomposition, in Proceedings of the 41st IEEE Conference on Decision and Control, 3, Las Vegas, Nevada, USA, (2002), 3482-3487.
doi: 10.1109/CDC.2002.1184414. |
[21] |
M. Patrao, Existence of complete Lyapunov functions for semiflows on separable metric spaces, Far East Journal of Dynamical Systems, 17 (2011), 49-54. |
[22] |
M. Peet and A. Papachristodoulou, A converse sum-of-squares Lyapunov result: An existence proof based on the Picard iteration, in Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, Georgia, USA, (2010), 5949-5954.
doi: 10.1109/CDC.2010.5717536. |
[23] |
S. Ratschan and Z. She, Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions, SIAM J. Control and Optimization, 48 (2010), 4377-4394.
doi: 10.1137/090749955. |
[24] |
R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), 146-160.
doi: 10.1137/0201010. |
[25] |
A. R. Teel and L. Praly, A smooth Lyapunov function from a class-$\mathcal{KL}$ estimate involving two positive semidefinite functions, ESAIM Control Optim. Calc. Var., 5 (2000), 313-367.
doi: 10.1051/cocv:2000113. |
[26] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.
doi: 10.1007/s002080010018. |
[27] |
T. Yoshizawa, On the stability of solutions of a system of differential equations, Memoirs of the College of Science, University of Kyoto, Series A: Mathematics, 29 (1955), 27-33. |
[1] |
Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172 |
[2] |
Corrado Falcolini, Laura Tedeschini-Lalli. A numerical renormalization method for quasi–conservative periodic attractors. Journal of Computational Dynamics, 2020, 7 (2) : 461-468. doi: 10.3934/jcd.2020018 |
[3] |
Toufik Bentrcia, Abdelaziz Mennouni. On the asymptotic stability of a Bresse system with two fractional damping terms: Theoretical and numerical analysis. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022090 |
[4] |
Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701 |
[5] |
Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial and Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421 |
[6] |
Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations and Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023 |
[7] |
David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499 |
[8] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[9] |
Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551 |
[10] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[11] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[12] |
Johan Matheus Tuwankotta, Eric Harjanto. Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation. Journal of Computational Dynamics, 2019, 6 (2) : 469-483. doi: 10.3934/jcd.2019024 |
[13] |
Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial and Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068 |
[14] |
Xianjin Chen, Jianxin Zhou. A local min-orthogonal method for multiple solutions of strongly coupled elliptic systems. Conference Publications, 2009, 2009 (Special) : 151-160. doi: 10.3934/proc.2009.2009.151 |
[15] |
Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067 |
[16] |
Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203 |
[17] |
Zeng-Zhen Tan, Rong Hu, Ming Zhu, Ya-Ping Fang. A dynamical system method for solving the split convex feasibility problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 2989-3011. doi: 10.3934/jimo.2020104 |
[18] |
Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 |
[19] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319 |
[20] |
Sergio Grillo, Jerrold E. Marsden, Sujit Nair. Lyapunov constraints and global asymptotic stabilization. Journal of Geometric Mechanics, 2011, 3 (2) : 145-196. doi: 10.3934/jgm.2011.3.145 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]