-
Previous Article
(Un)conditional consensus emergence under perturbed and decentralized feedback controls
- DCDS Home
- This Issue
-
Next Article
Computation of Lyapunov functions for systems with multiple local attractors
Value iteration convergence of $\epsilon$-monotone schemes for stationary Hamilton-Jacobi equations
1. | Laboratoire Jacques-Louis Lions, UMR 7598, Université Paris-Diderot (Paris 7), UFR de Mathématiques - 5 rue Thomas Mann, 75205 Paris CEDEX 13 |
2. | Dipartimento di Matematica, Istituto "Guido Castelnuovo", Sapienza Università di Roma, Piazzale Aldo Moro, 2 I-00185 Roma |
3. | Dipartimento di Matematica e Fisica, Università di Roma Tre, L.go S. Leonardo Murialdo, 1, 00146 Roma, Italy |
4. | Mathematisches Institut, Fakultät für Mathematik, Physik und Informatik, Universität Bayreuth, 95440 Bayreuth, Germany |
5. | Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, 4040 Linz, Austria |
6. | Unité des mathématiques appliquées (UMA), ENSTA ParisTech, 828 Bd Maréchaux, 91120 Palaiseau |
References:
[1] |
R. Abgrall, Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes, Comm. Pure Appl. Math., 49 (1996), 1339-1373.
doi: 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO;2-B. |
[2] |
R. Abgrall, Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41 (2003), 2233-2261.
doi: 10.1137/S0036142998345980. |
[3] |
S. Augoula and R. Abgrall, High order numerical discretization for Hamilton-Jacobi equations on triangular meshes, J. Sci. Comput., 15 (2000), 197-229.
doi: 10.1023/A:1007633810484. |
[4] |
D. S. Balsara, T. Rumpf, M. Dumbser and C.-D. Munz, Efficient, high accuracy ader-weno schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228 (2009), 2480-2516.
doi: 10.1016/j.jcp.2008.12.003. |
[5] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[6] |
G. Barles, Solutions de Viscositè des Equations d'Hamilton-Jacobi, Springer-Verlag, 1998. |
[7] |
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991), 271-283. |
[8] |
F. Bauer, L. Grüne and W. Semmler, Adaptive spline interpolation for Hamilton-Jacobi-Bellman equations, Appl. Numer. Math., 56 (2006), 1196-1210.
doi: 10.1016/j.apnum.2006.03.011. |
[9] |
O. Bokanowski, E. Cristiani and H. Zidani, An efficient data structure and accurate scheme to solve front propagation problems, J. Sci. Comput., 42 (2010), 251-273.
doi: 10.1007/s10915-009-9329-6. |
[10] |
O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations, J. Sci. Comput., 55 (2013), 575-605.
doi: 10.1007/s10915-012-9648-x. |
[11] |
O. Bokanowski, N. Megdich and H. Zidani, Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data, Numer. Math., 115 (2010), 1-44.
doi: 10.1007/s00211-009-0271-1. |
[12] |
O. Bokanowski and H. Zidani, Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellmann equations, J. Sci. Comput., 30 (2007), 1-33.
doi: 10.1007/s10915-005-9017-0. |
[13] |
S. Bryson, A. Kurganov, D. Levy and G. Petrova, Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations, IMA J. Numer. Anal., 25 (2005), 113-138.
doi: 10.1093/imanum/drh015. |
[14] |
S. Bryson and D. Levy, High-order central WENO schemes for multidimensional Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41 (2003), 1339-1369 (electronic).
doi: 10.1137/S0036142902408404. |
[15] |
S. Bryson and D. Levy, Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations, Appl. Numer. Math., 56 (2006), 1211-1224.
doi: 10.1016/j.apnum.2006.03.005. |
[16] |
F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed system, SIAM J. Control Optim., 40 (2001), 496-515.
doi: 10.1137/S036301299936316X. |
[17] |
I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11 (1984), 161-181.
doi: 10.1007/BF01442176. |
[18] |
E. Carlini, M. Falcone, and R. Ferretti., An efficient algorithm for Hamilton-Jacobi equations in high dimension, Comput. Vis. Sci., 7 (2004), 15-29.
doi: 10.1007/s00791-004-0124-5. |
[19] |
E. Carlini, R. Ferretti and G. Russo, A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 27 (2005), 1071-1091.
doi: 10.1137/040608787. |
[20] |
F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach, Math. Comp., 57 (1991), 169-210.
doi: 10.1090/S0025-5718-1991-1079010-2. |
[21] |
F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: A general theory, SIAM J. Numer. Anal., 30 (1993), 675-700.
doi: 10.1137/0730033. |
[22] |
L. Corrias, M. Falcone and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations, Math. Comp., 64 (1995), 555-580, S13-S18.
doi: 10.1090/S0025-5718-1995-1265013-5. |
[23] |
M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp., 43 (1984), 1-19.
doi: 10.1090/S0025-5718-1984-0744921-8. |
[24] |
M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc., 78 (1980), 385-390.
doi: 10.1090/S0002-9939-1980-0553381-X. |
[25] |
M. Falcone, Numerical methods for differential games via PDEs, Int. Game Theor. Rev., 8 (2006), 231-272.
doi: 10.1142/S0219198906000886. |
[26] |
M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numer. Math., 67 (1994), 315-344.
doi: 10.1007/s002110050031. |
[27] |
M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods, J. Comp. Phys., 175 (2002), 559-575.
doi: 10.1006/jcph.2001.6954. |
[28] |
M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations, SIAM, Philadelphia, 2014.
doi: 10.1137/1.9781611973051. |
[29] |
R. Ferretti, Convergence of semi-Lagrangian approximations to convex Hamilton-Jacobi equations under (very) large Courant numbers, SIAM J. Numer. Anal., 40 (2002), 2240-2253.
doi: 10.1137/S0036142901388378. |
[30] |
B. D. Froese and A. M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation, SIAM J. Numer. Anal., 51 (2013), 423-444.
doi: 10.1137/120875065. |
[31] |
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, volume 118 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0713-9. |
[32] |
L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation, Numer. Math., 75 (1997), 319-337.
doi: 10.1007/s002110050241. |
[33] |
L. Grüne, M. Kato and W. Semmler, Solving ecological management problems using dynamic programming, J. Econ. Behav. Organ., 57 (2005), 448-473.
doi: 10.1016/j.jebo.2005.04.002. |
[34] |
A. Harten, B. Engquist, S. Osher and S. R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III, J. Comput. Phys., 71 (1987), 231-303.
doi: 10.1016/0021-9991(87)90031-3. |
[35] |
A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I, SIAM J. Numer. Anal., 24 (1987), 279-309.
doi: 10.1137/0724022. |
[36] |
A. Harten, S. Osher, B. Engquist and S. R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes, Appl. Numer. Math., 2 (1986), 347-377.
doi: 10.1016/0168-9274(86)90039-5. |
[37] |
P. Hoch and O. Pironneau, A vector Hamilton-Jacobi formulation for the numerical simulation of Euler flows, C. R. Math. Acad. Sci. Paris, 342 (2006), 151-156.
doi: 10.1016/j.crma.2005.11.007. |
[38] |
C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21 (1999), 666-690.
doi: 10.1137/S1064827598337282. |
[39] |
G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202-228.
doi: 10.1006/jcph.1996.0130. |
[40] |
F. Li and C.-W. Shu, Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations, Appl. Math. Lett., 18 (2005), 1204-1209.
doi: 10.1016/j.aml.2004.10.009. |
[41] |
P. Lions and P. Souganidis, Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations, Num. Math., 69 (1995), 441-470.
doi: 10.1007/s002110050102. |
[42] |
X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), 200-212.
doi: 10.1006/jcph.1994.1187. |
[43] |
S. Osher, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal., 22 (1985), 947-961.
doi: 10.1137/0722057. |
[44] |
B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 135 (1997), 227-248.
doi: 10.1006/jcph.1997.5757. |
[45] |
Y.-T. Zhang and C.-W. Shu, High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes, SIAM J. Sci. Comput., 24 (2002), 1005-1030.
doi: 10.1137/S1064827501396798. |
show all references
References:
[1] |
R. Abgrall, Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes, Comm. Pure Appl. Math., 49 (1996), 1339-1373.
doi: 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO;2-B. |
[2] |
R. Abgrall, Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41 (2003), 2233-2261.
doi: 10.1137/S0036142998345980. |
[3] |
S. Augoula and R. Abgrall, High order numerical discretization for Hamilton-Jacobi equations on triangular meshes, J. Sci. Comput., 15 (2000), 197-229.
doi: 10.1023/A:1007633810484. |
[4] |
D. S. Balsara, T. Rumpf, M. Dumbser and C.-D. Munz, Efficient, high accuracy ader-weno schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228 (2009), 2480-2516.
doi: 10.1016/j.jcp.2008.12.003. |
[5] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[6] |
G. Barles, Solutions de Viscositè des Equations d'Hamilton-Jacobi, Springer-Verlag, 1998. |
[7] |
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991), 271-283. |
[8] |
F. Bauer, L. Grüne and W. Semmler, Adaptive spline interpolation for Hamilton-Jacobi-Bellman equations, Appl. Numer. Math., 56 (2006), 1196-1210.
doi: 10.1016/j.apnum.2006.03.011. |
[9] |
O. Bokanowski, E. Cristiani and H. Zidani, An efficient data structure and accurate scheme to solve front propagation problems, J. Sci. Comput., 42 (2010), 251-273.
doi: 10.1007/s10915-009-9329-6. |
[10] |
O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations, J. Sci. Comput., 55 (2013), 575-605.
doi: 10.1007/s10915-012-9648-x. |
[11] |
O. Bokanowski, N. Megdich and H. Zidani, Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous initial data, Numer. Math., 115 (2010), 1-44.
doi: 10.1007/s00211-009-0271-1. |
[12] |
O. Bokanowski and H. Zidani, Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellmann equations, J. Sci. Comput., 30 (2007), 1-33.
doi: 10.1007/s10915-005-9017-0. |
[13] |
S. Bryson, A. Kurganov, D. Levy and G. Petrova, Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations, IMA J. Numer. Anal., 25 (2005), 113-138.
doi: 10.1093/imanum/drh015. |
[14] |
S. Bryson and D. Levy, High-order central WENO schemes for multidimensional Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41 (2003), 1339-1369 (electronic).
doi: 10.1137/S0036142902408404. |
[15] |
S. Bryson and D. Levy, Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations, Appl. Numer. Math., 56 (2006), 1211-1224.
doi: 10.1016/j.apnum.2006.03.005. |
[16] |
F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed system, SIAM J. Control Optim., 40 (2001), 496-515.
doi: 10.1137/S036301299936316X. |
[17] |
I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11 (1984), 161-181.
doi: 10.1007/BF01442176. |
[18] |
E. Carlini, M. Falcone, and R. Ferretti., An efficient algorithm for Hamilton-Jacobi equations in high dimension, Comput. Vis. Sci., 7 (2004), 15-29.
doi: 10.1007/s00791-004-0124-5. |
[19] |
E. Carlini, R. Ferretti and G. Russo, A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 27 (2005), 1071-1091.
doi: 10.1137/040608787. |
[20] |
F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach, Math. Comp., 57 (1991), 169-210.
doi: 10.1090/S0025-5718-1991-1079010-2. |
[21] |
F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: A general theory, SIAM J. Numer. Anal., 30 (1993), 675-700.
doi: 10.1137/0730033. |
[22] |
L. Corrias, M. Falcone and R. Natalini, Numerical schemes for conservation laws via Hamilton-Jacobi equations, Math. Comp., 64 (1995), 555-580, S13-S18.
doi: 10.1090/S0025-5718-1995-1265013-5. |
[23] |
M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp., 43 (1984), 1-19.
doi: 10.1090/S0025-5718-1984-0744921-8. |
[24] |
M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc., 78 (1980), 385-390.
doi: 10.1090/S0002-9939-1980-0553381-X. |
[25] |
M. Falcone, Numerical methods for differential games via PDEs, Int. Game Theor. Rev., 8 (2006), 231-272.
doi: 10.1142/S0219198906000886. |
[26] |
M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numer. Math., 67 (1994), 315-344.
doi: 10.1007/s002110050031. |
[27] |
M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods, J. Comp. Phys., 175 (2002), 559-575.
doi: 10.1006/jcph.2001.6954. |
[28] |
M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations, SIAM, Philadelphia, 2014.
doi: 10.1137/1.9781611973051. |
[29] |
R. Ferretti, Convergence of semi-Lagrangian approximations to convex Hamilton-Jacobi equations under (very) large Courant numbers, SIAM J. Numer. Anal., 40 (2002), 2240-2253.
doi: 10.1137/S0036142901388378. |
[30] |
B. D. Froese and A. M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation, SIAM J. Numer. Anal., 51 (2013), 423-444.
doi: 10.1137/120875065. |
[31] |
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, volume 118 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0713-9. |
[32] |
L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation, Numer. Math., 75 (1997), 319-337.
doi: 10.1007/s002110050241. |
[33] |
L. Grüne, M. Kato and W. Semmler, Solving ecological management problems using dynamic programming, J. Econ. Behav. Organ., 57 (2005), 448-473.
doi: 10.1016/j.jebo.2005.04.002. |
[34] |
A. Harten, B. Engquist, S. Osher and S. R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III, J. Comput. Phys., 71 (1987), 231-303.
doi: 10.1016/0021-9991(87)90031-3. |
[35] |
A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I, SIAM J. Numer. Anal., 24 (1987), 279-309.
doi: 10.1137/0724022. |
[36] |
A. Harten, S. Osher, B. Engquist and S. R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes, Appl. Numer. Math., 2 (1986), 347-377.
doi: 10.1016/0168-9274(86)90039-5. |
[37] |
P. Hoch and O. Pironneau, A vector Hamilton-Jacobi formulation for the numerical simulation of Euler flows, C. R. Math. Acad. Sci. Paris, 342 (2006), 151-156.
doi: 10.1016/j.crma.2005.11.007. |
[38] |
C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21 (1999), 666-690.
doi: 10.1137/S1064827598337282. |
[39] |
G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202-228.
doi: 10.1006/jcph.1996.0130. |
[40] |
F. Li and C.-W. Shu, Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations, Appl. Math. Lett., 18 (2005), 1204-1209.
doi: 10.1016/j.aml.2004.10.009. |
[41] |
P. Lions and P. Souganidis, Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations, Num. Math., 69 (1995), 441-470.
doi: 10.1007/s002110050102. |
[42] |
X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), 200-212.
doi: 10.1006/jcph.1994.1187. |
[43] |
S. Osher, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal., 22 (1985), 947-961.
doi: 10.1137/0722057. |
[44] |
B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 135 (1997), 227-248.
doi: 10.1006/jcph.1997.5757. |
[45] |
Y.-T. Zhang and C.-W. Shu, High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes, SIAM J. Sci. Comput., 24 (2002), 1005-1030.
doi: 10.1137/S1064827501396798. |
[1] |
Simone Göttlich, Ute Ziegler, Michael Herty. Numerical discretization of Hamilton--Jacobi equations on networks. Networks and Heterogeneous Media, 2013, 8 (3) : 685-705. doi: 10.3934/nhm.2013.8.685 |
[2] |
Thomas Strömberg. A system of the Hamilton--Jacobi and the continuity equations in the vanishing viscosity limit. Communications on Pure and Applied Analysis, 2011, 10 (2) : 479-506. doi: 10.3934/cpaa.2011.10.479 |
[3] |
Marc Wolff, Stéphane Jaouen, Hervé Jourdren, Eric Sonnendrücker. High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 345-367. doi: 10.3934/dcdss.2012.5.345 |
[4] |
Kai Jiang, Wei Si. High-order energy stable schemes of incommensurate phase-field crystal model. Electronic Research Archive, 2020, 28 (2) : 1077-1093. doi: 10.3934/era.2020059 |
[5] |
Yves Achdou, Fabio Camilli, Lucilla Corrias. On numerical approximation of the Hamilton-Jacobi-transport system arising in high frequency approximations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 629-650. doi: 10.3934/dcdsb.2014.19.629 |
[6] |
Phillip Colella. High-order finite-volume methods on locally-structured grids. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4247-4270. doi: 10.3934/dcds.2016.36.4247 |
[7] |
Xuefeng Shen, Khoa Tran, Melvin Leok. High-order symplectic Lie group methods on $ SO(n) $ using the polar decomposition. Journal of Computational Dynamics, 2022 doi: 10.3934/jcd.2022003 |
[8] |
Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933 |
[9] |
Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295 |
[10] |
Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial and Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161 |
[11] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5495-5508. doi: 10.3934/dcdsb.2020355 |
[12] |
Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic and Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024 |
[13] |
Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461 |
[14] |
Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513 |
[15] |
María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207 |
[16] |
Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369 |
[17] |
Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441 |
[18] |
Bian-Xia Yang, Shanshan Gu, Guowei Dai. Existence and multiplicity for Hamilton-Jacobi-Bellman equation. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3767-3793. doi: 10.3934/cpaa.2021130 |
[19] |
Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549 |
[20] |
Jiantao Jiang, Jing An, Jianwei Zhou. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022066 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]