• Previous Article
    Integrability methods in the time minimal coherence transfer for Ising chains of three spins
  • DCDS Home
  • This Issue
  • Next Article
    Value iteration convergence of $\epsilon$-monotone schemes for stationary Hamilton-Jacobi equations
September  2015, 35(9): 4071-4094. doi: 10.3934/dcds.2015.35.4071

(Un)conditional consensus emergence under perturbed and decentralized feedback controls

1. 

Technische Universität München, Fakultät Mathematik, Boltzmannstraße 3, D-85748 Garching, Germany

2. 

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, 4040 Linz

Received  April 2014 Revised  September 2014 Published  April 2015

We study the problem of consensus emergence in multi-agent systems via external feedback controllers. We consider a set of agents interacting with dynamics given by a Cucker-Smale type of model, and study its consensus stabilization by means of centralized and decentralized control configurations. We present a characterization of consensus emergence for systems with different feedback structures, such as leader-based configurations, perturbed information feedback, and feedback computed upon spatially confined information. We characterize consensus emergence for this latter design as a parameter-dependent transition regime between self-regulation and centralized feedback stabilization. Numerical experiments illustrate the different features of the proposed designs.
Citation: Mattia Bongini, Massimo Fornasier, Dante Kalise. (Un)conditional consensus emergence under perturbed and decentralized feedback controls. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4071-4094. doi: 10.3934/dcds.2015.35.4071
References:
[1]

L. Bakule, Decentralized control: An overview,, Annu. Rev. Control, 32 (2008), 87.  doi: 10.1016/j.arcontrol.2008.03.004.  Google Scholar

[2]

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 1232.  doi: 10.1073/pnas.0711437105.  Google Scholar

[3]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse Stabilization and Control of Alignment Models,, Math. Mod. Meth. Appl. Sci. (M3AS), 25 (2015), 521.  doi: 10.1142/S0218202515400059.  Google Scholar

[4]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming,, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, (2010), 297.  doi: 10.1007/978-0-8176-4946-3_12.  Google Scholar

[5]

F. Cucker and C. Huepe, Flocking with informed agents,, MathS In Action, 1 (2008), 1.  doi: 10.5802/msia.1.  Google Scholar

[6]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[7]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[8]

A. Filipov, Differential Equations with Discontinuous Righthand Sides,, Volume 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[9]

M. Fornasier and F. Solombrino, Mean-field optimal control,, ESAIM, 20 (2014), 1123.  doi: 10.1051/cocv/2014009.  Google Scholar

[10]

S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the cucker-smale-type model with the rayleigh friction,, J. Phys. A: Math. Theor.l, 43 (2010).  doi: 10.1088/1751-8113/43/31/315201.  Google Scholar

[11]

S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings,, IEEE Trans. Automat. Control, 55 (2010), 1679.  doi: 10.1109/TAC.2010.2046113.  Google Scholar

[12]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation,, J. Artif. Soc. Soc. Simulat., 5 (2002), 1.   Google Scholar

[13]

P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks,, Springer, (2013).  doi: 10.1007/978-1-4471-4147-1.  Google Scholar

[14]

R. M. Murray, Recent research in cooperative control of multivehicle systems,, J. Dyn. Syst. Meas. Control , 129 (2007), 571.  doi: 10.1115/1.2766721.  Google Scholar

[15]

R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520.  doi: 10.1109/TAC.2004.834113.  Google Scholar

[16]

A. A. Peters, R. H. Middleton and O. Mason, Leader tracking in homogeneous vehicle platoons with broadcast delays,, Automatica, 50 (2014), 64.  doi: 10.1016/j.automatica.2013.09.034.  Google Scholar

[17]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,, SIGGRAPH Comput. Graph., 21 (1987), 25.  doi: 10.1145/37401.37406.  Google Scholar

[18]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

show all references

References:
[1]

L. Bakule, Decentralized control: An overview,, Annu. Rev. Control, 32 (2008), 87.  doi: 10.1016/j.arcontrol.2008.03.004.  Google Scholar

[2]

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 1232.  doi: 10.1073/pnas.0711437105.  Google Scholar

[3]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse Stabilization and Control of Alignment Models,, Math. Mod. Meth. Appl. Sci. (M3AS), 25 (2015), 521.  doi: 10.1142/S0218202515400059.  Google Scholar

[4]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming,, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, (2010), 297.  doi: 10.1007/978-0-8176-4946-3_12.  Google Scholar

[5]

F. Cucker and C. Huepe, Flocking with informed agents,, MathS In Action, 1 (2008), 1.  doi: 10.5802/msia.1.  Google Scholar

[6]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[7]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[8]

A. Filipov, Differential Equations with Discontinuous Righthand Sides,, Volume 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[9]

M. Fornasier and F. Solombrino, Mean-field optimal control,, ESAIM, 20 (2014), 1123.  doi: 10.1051/cocv/2014009.  Google Scholar

[10]

S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the cucker-smale-type model with the rayleigh friction,, J. Phys. A: Math. Theor.l, 43 (2010).  doi: 10.1088/1751-8113/43/31/315201.  Google Scholar

[11]

S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings,, IEEE Trans. Automat. Control, 55 (2010), 1679.  doi: 10.1109/TAC.2010.2046113.  Google Scholar

[12]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation,, J. Artif. Soc. Soc. Simulat., 5 (2002), 1.   Google Scholar

[13]

P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks,, Springer, (2013).  doi: 10.1007/978-1-4471-4147-1.  Google Scholar

[14]

R. M. Murray, Recent research in cooperative control of multivehicle systems,, J. Dyn. Syst. Meas. Control , 129 (2007), 571.  doi: 10.1115/1.2766721.  Google Scholar

[15]

R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Trans. Autom. Control, 49 (2004), 1520.  doi: 10.1109/TAC.2004.834113.  Google Scholar

[16]

A. A. Peters, R. H. Middleton and O. Mason, Leader tracking in homogeneous vehicle platoons with broadcast delays,, Automatica, 50 (2014), 64.  doi: 10.1016/j.automatica.2013.09.034.  Google Scholar

[17]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,, SIGGRAPH Comput. Graph., 21 (1987), 25.  doi: 10.1145/37401.37406.  Google Scholar

[18]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[1]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[2]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[3]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[4]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[5]

Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022

[6]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[7]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[8]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[9]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

[10]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[11]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[12]

Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040

[13]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2763-2793. doi: 10.3934/dcds.2018116

[14]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[15]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

[16]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks & Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[17]

Ioannis Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5245-5260. doi: 10.3934/dcds.2018232

[18]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[19]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[20]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]