Citation: |
[1] |
L. Bakule, Decentralized control: An overview, Annu. Rev. Control, 32 (2008), 87-98.doi: 10.1016/j.arcontrol.2008.03.004. |
[2] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 1232-1237.doi: 10.1073/pnas.0711437105. |
[3] |
M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse Stabilization and Control of Alignment Models, Math. Mod. Meth. Appl. Sci. (M3AS), 25 (2015), 521-564.doi: 10.1142/S0218202515400059. |
[4] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, L. Pareschi, G. Toscani and N. Bellomo), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, (2010), 297-336.doi: 10.1007/978-0-8176-4946-3_12. |
[5] |
F. Cucker and C. Huepe, Flocking with informed agents, MathS In Action, 1 (2008), 1-25.doi: 10.5802/msia.1. |
[6] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.doi: 10.1109/TAC.2007.895842. |
[7] |
F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.doi: 10.1007/s11537-007-0647-x. |
[8] |
A. Filipov, Differential Equations with Discontinuous Righthand Sides, Volume 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1988.doi: 10.1007/978-94-015-7793-9. |
[9] |
M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM, Control Optim. Calc. Var., 20 (2014), 1123-1152.doi: 10.1051/cocv/2014009. |
[10] |
S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the cucker-smale-type model with the rayleigh friction, J. Phys. A: Math. Theor.l, 43 (2010), 315201, 19 pp.doi: 10.1088/1751-8113/43/31/315201. |
[11] |
S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683.doi: 10.1109/TAC.2010.2046113. |
[12] |
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Soc. Simulat., 5 (2002), 1-24. |
[13] |
P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks, Springer, 2013.doi: 10.1007/978-1-4471-4147-1. |
[14] |
R. M. Murray, Recent research in cooperative control of multivehicle systems, J. Dyn. Syst. Meas. Control , 129 (2007), 571-583.doi: 10.1115/1.2766721. |
[15] |
R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520-1533.doi: 10.1109/TAC.2004.834113. |
[16] |
A. A. Peters, R. H. Middleton and O. Mason, Leader tracking in homogeneous vehicle platoons with broadcast delays, Automatica, 50 (2014), 64-74.doi: 10.1016/j.automatica.2013.09.034. |
[17] |
C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, SIGGRAPH Comput. Graph., 21 (1987), 25-34.doi: 10.1145/37401.37406. |
[18] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.doi: 10.1103/PhysRevLett.75.1226. |