Citation: |
[1] |
A. Agrachev, U. Boscain and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete Contin. Dyn. Syst., 20 (2008), 801-822.doi: 10.3934/dcds.2008.20.801. |
[2] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Translated from the Russian by K. Vogtmann and A. Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4757-2063-1. |
[3] |
M. Audin, Les Systèmes Hamiltoniens Et Leur Intégrabilité, (French) [Hamiltonian Systems and Their Integrability], Cours Spécialisés [Specialized Courses], 8. Société Mathématique de France, Paris; EDP Sciences, Les Ulis, 2001. viii+170 pp. |
[4] |
D. Birkhoff, Dynamical Systems, American society colloquium publications, vol. IX, 1927. |
[5] |
A. V. Bolsinov and A. T. Fomenko, Integrable Geodesic Flows on Two-Dimensional Surfaces, Monographs in contemporary mathematrics, Kluwer Academic, 2000.doi: 10.1007/978-1-4615-4307-7. |
[6] |
B. Bonnard and J.-B. Caillau, Metrics with equatorial singularities on the sphere, Ann. Mat. Pura Appl., 193 (2014), 1353-1382.doi: 10.1007/s10231-013-0333-y. |
[7] |
B. Bonnard, O. Cots and L. Jassionnesse, Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces, Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Series, 5 (2014), 53-72.doi: 10.1007/978-3-319-02132-4_4. |
[8] |
B. Bonnard, O. Cots, J.-B. Pomet and N. Shcherbakova, Riemannian metrics on 2d-manifolds related to the Euler-Poinsot rigid body motion, ESAIM Control Optim. Calc. Var., 20 (2014), 864-893.doi: 10.1051/cocv/2013087. |
[9] |
U. Boscain, T. Chambrion and G. Charlot, Nonisotropic 3-level quantum systems: Complete solutions for minimum time and minimum energy, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 957-990.doi: 10.3934/dcdsb.2005.5.957. |
[10] |
J. I. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids, Manuscripta Math., 114 (2004), 247-264.doi: 10.1007/s00229-004-0455-z. |
[11] |
J. I. Itoh and K. Kiyohara, Cut loci and conjugate loci on Liouville surfaces, Manuscripta Math., 136 (2011), 115-141.doi: 10.1007/s00229-011-0433-1. |
[12] |
L. Jassionnesse, Contrôle Optimal et Métriques de Clairaut-Liouville Avec Applications, Ph.D thesis, Université de Bourgogne, 2014. |
[13] |
V. Jurdjevic, Geometric Control Theory, Studies in Advanced Mathematics, 52. Cambridge University Press, Cambridge, 1997. xviii+492 pp. |
[14] |
N. Khaneja, S. J. Glaser and R. Brockett, Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer, Phys. Rev. A (3), 65 (2002), part A, 032301, 11 pp.doi: 10.1103/PhysRevA.65.032301. |
[15] |
J. J. Kovacic, An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput., 2 (1986), 3-43.doi: 10.1016/S0747-7171(86)80010-4. |
[16] |
D. F. Lawden, Elliptic Functions and Applications, Applied Mathematical Sciences, 80. Springer-Verlag, New York, 1989. xiv+334 pp.doi: 10.1007/978-1-4757-3980-0. |
[17] |
H. Levitt, Spin Dynamics - Basics of Nuclear Magnetic Resonance, (2001) Wiley (686 pages). |
[18] |
J. J. Morales-Ruiz and J. P. Ramis, Integrability of dynamical systems through differential Galois theory: A practical guide, Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc., Providence, RI, 509 (2010), 143-220.doi: 10.1090/conm/509/09980. |
[19] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962. |
[20] |
M. Singer and F. Ulmer, Galois groups of second and third order linear differential equations, J. Symbolic Comput., 16 (1993), 9-36.doi: 10.1006/jsco.1993.1032. |
[21] |
M. van der Put and M. Singer, Galois Theory of Linear Differential Equations, Springer-Verlag, Berlin, 2003.doi: 10.1007/978-3-642-55750-7. |
[22] |
H. Yuan, Geometry, Optimal Control and Quantum Computing, Ph.D thesis, Harvard, 2006. |
[23] |
H. Yuan, R. Zeier and N. Khaneja, Elliptic functions and efficient control of Ising spin chains with unequal couplings, Phys. Rev. A, 77, (2008), 032340.doi: 10.1103/PhysRevA.77.032340. |