Citation: |
[1] |
A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press, 2000. |
[2] |
A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flow on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.doi: 10.4171/EMSS/2. |
[3] |
A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks, Networks & Heter. Media, 8 (2013), 627-648.doi: 10.3934/nhm.2013.8.627. |
[4] |
A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads, Networks & Heter. Media, to appear. |
[5] |
A. Bressan and K. Nguyen, Optima and equilibria for traffic flow on networks with backward propagating queues, Networks & Heter. Media, submitted. |
[6] |
A. Bressan and W. Shen, Uniqueness for discontinuous O.D.E. and conservation laws, Nonlinear Analysis, T.M.A., 34 (1998), 637-652.doi: 10.1016/S0362-546X(97)00590-7. |
[7] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.doi: 10.1137/S0036141004402683. |
[8] |
C. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41.doi: 10.1016/0022-247X(72)90114-X. |
[9] |
C. Daganzo, Fundamentals of Transportation and Traffic Operations, Pergamon-Elsevier, Oxford, U.K., 1997. |
[10] |
L. C. Evans, Partial Differential Equations, $2^{nd}$ edition, American Mathematical Society, Providence, RI, 2010. |
[11] |
M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst., 32 (2012), 1915-1938.doi: 10.3934/dcds.2012.32.1915. |
[12] |
M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, in AIMS Series on Applied Mathematics, Springfield, Mo., 2006. |
[13] |
M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. Inst. H. Poincaré, 26 (2009), 1925-1951.doi: 10.1016/j.anihpc.2009.04.001. |
[14] |
M. Herty, S. Moutari and M. Rascle, Optimization criteria for modeling intersections of vehicular traffic flow, Netw. Heter. Media., 1 (2006), 275-294.doi: 10.3934/nhm.2006.1.275. |
[15] |
M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media., 4 (2009), 813-826.doi: 10.3934/nhm.2009.4.813. |
[16] |
C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM Control Optim. Calc. Var., 19 (2013), 129-166.doi: 10.1051/cocv/2012002. |
[17] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London: Series A, 229 (1955), 317-345.doi: 10.1098/rspa.1955.0089. |
[18] |
P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51.doi: 10.1287/opre.4.1.42. |
[19] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, $2^{nd}$ edition, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4612-0873-0. |