\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A model problem for Mean Field Games on networks

Abstract / Introduction Related Papers Cited by
  • In [14], Guéant, Lasry and Lions considered the model problem ``What time does meeting start?'' as a prototype for a general class of optimization problems with a continuum of players, called Mean Field Games problems. In this paper we consider a similar model, but with the dynamics of the agents defined on a network. We discuss appropriate transition conditions at the vertices which give a well posed problem and we present some numerical results.
    Mathematics Subject Classification: Primary: 91A15, 35R02; Secondary: 35B30, 49N70, 65M06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Achdou, Finite difference methods for mean field games, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, Lecture Notes in Math. volume 2074, Springer, Berlin, (2013), 1-47.doi: 10.1007/978-3-642-36433-4_1.

    [2]

    J. von Below, Classical solvability of linear parabolic equations on networks, J. Differential Equations, 72 (1988), 316-337.doi: 10.1016/0022-0396(88)90158-1.

    [3]

    J. von Below and S. Nicaise, Dynamical interface transition in ramified media with diffusion, Comm. Partial Differential Equations, 21 (1996), 255-279.doi: 10.1080/03605309608821184.

    [4]

    M. Burger, M. Di Francesco, P. Markowich and M.-T. Wolfram, Mean field games with linear mobilities in pedestrian dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1311-1333, arXiv:1304.5201.doi: 10.3934/dcdsb.2014.19.1311.

    [5]

    F. Camilli, C. Marchi and D. Schieborn, The vanishing viscosity limit for Hamilton-Jacobi equation on networks, J. Differential Equations, 254 (2013), 4122-4143.doi: 10.1016/j.jde.2013.02.013.

    [6]

    P. Cardaliaguet, Notes on Mean Field Games: from P.-L. Lions' lectures at Collège de France, Lecture Notes given at Tor Vergata, 2010.

    [7]

    G. M. Coclite and M. Garavello, Vanishing viscosity for traffic on networks, SIAM J. Math. Anal., 42 (2010), 1761-1783.doi: 10.1137/090771417.

    [8]

    C. Dogbé, Modeling crowd dynamics by the mean-field limit approach, Math. Comput. Modelling, 52 (2010), 1506-1520.doi: 10.1016/j.mcm.2010.06.012.

    [9]

    M. Freidlin and S. J. Sheu, Diffusion processes on graphs: Stochastic differential equations, large deviation principle, Probab. Theory Related Fields, 116 (2000), 181-220.doi: 10.1007/PL00008726.

    [10]

    M. Freidlin and A. Wentzell, Diffusion processes on graphs and the averaging principle, Ann. Probab., 21 (1993), 2215-2245.doi: 10.1214/aop/1176989018.

    [11]

    M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, Vol. 1, American Institute of Mathematical Sciences, 2006.

    [12]

    D. Gomes and J. Saude, Mean field games - A brief survey, Dyn.Games Appl., 4 (2014), 110-154.doi: 10.1007/s13235-013-0099-2.

    [13]

    M. Kramar Fijavz, D. Mugnolo and E. Sikolya, Variational and semigroup methods for waves and diffusion in networks, Appl. Math. Optim., 55 (2007), 219-240.doi: 10.1007/s00245-006-0887-9.

    [14]

    O. Guéant, J-M. Lasry and P-L. Lions, Mean field games and applications, in Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math. volume 2003, Springer, Berlin, (2011), 205-266.doi: 10.1007/978-3-642-14660-2_3.

    [15]

    O. Guéant, Mean field games equations with quadratic Hamiltonian: A specific approach, M3AS Math. Models Methods Appl. Sci., 22 (2012), 1250022, 37pp.doi: 10.1142/S0218202512500224.

    [16]

    O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, R.I., 1968.

    [17]

    J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.doi: 10.1007/s11537-007-0657-8.

    [18]

    D. Mugnolo, Gaussian estimates for a heat equation on a network, Netw. Het. Media, 2 (2007), 55-79.doi: 10.3934/nhm.2007.2.55.

    [19]

    D. Mugnolo and S. Romanelli, Dynamic and generalized Wentzell node conditions for network equations, Math. Methods Appl. Sci., 30 (2007), 681-706.doi: 10.1002/mma.805.

    [20]

    B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738.doi: 10.1007/s00205-010-0366-y.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(239) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return