September  2015, 35(9): 4225-4239. doi: 10.3934/dcds.2015.35.4225

Global propagation of singularities for time dependent Hamilton-Jacobi equations

1. 

Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma

2. 

CNRS, IMJ-PRG, UMR 7586, Sorbonne Universités, UPMC Univ Paris Diderot, Sorbonne Paris Cité, Case 247, 4 Place Jussieu, 75252 Paris, France

3. 

Dipartimento di Matematica, Università di Roma, Via della Ricerca Scientifica 1, 00133 Roma

Received  August 2014 Revised  October 2014 Published  April 2015

We investigate the properties of the set of singularities of semiconcave solutions of Hamilton-Jacobi equations of the form \begin{equation}\label{abstract:EQ} u_t(t,x)+H(\nabla u(t,x))=0, \qquad\text{a.e. }(t,x)\in (0,+\infty)\times\Omega\subset\mathbb{R}^{n+1}\,. \end{equation} It is well known that the singularities of such solutions propagate locally along generalized characteristics. Special generalized characteristics, satisfying an energy condition, can be constructed, under some assumptions on the structure of the Hamiltonian $H$. In this paper, we provide estimates of the dissipative behavior of the energy along such curves. As an application, we prove that the singularities of any viscosity solution of (1) cannot vanish in a finite time.
Citation: Piermarco Cannarsa, Marco Mazzola, Carlo Sinestrari. Global propagation of singularities for time dependent Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4225-4239. doi: 10.3934/dcds.2015.35.4225
References:
[1]

P. Albano, Propagation of singularities for solutions of Hamilton-Jacobi equations,, J. Math. Anal. Appl., 411 (2014), 684.  doi: 10.1016/j.jmaa.2013.10.015.  Google Scholar

[2]

P. Albano and P. Cannarsa, Propagation of singularities for concave solutions of Hamilton-Jacobi equations,, in EQUADIFF 99 Proceedings of the International Conference on Differential Equations (eds. D. Fiedler, (2000), 583.   Google Scholar

[3]

P. Albano and P. Cannarsa, Propagation of singularities for solutions of nonlinear first order partial differential equations,, Arch. Ration. Mech. Anal., 162 (2002), 1.  doi: 10.1007/s002050100176.  Google Scholar

[4]

P. Albano, P. Cannarsa, K. T. Nguyen and C. Sinestrari, Singular gradient flow of the distance fundtion and homotopy equivalence,, Math. Ann., 356 (2013), 23.  doi: 10.1007/s00208-012-0835-8.  Google Scholar

[5]

M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi Equations,, Birkhäuser, (1997).  doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[6]

P. Cannarsa, A. Mennucci and C. Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi equations,, Arch. Rational Mech. Anal., 140 (1997), 197.  doi: 10.1007/s002050050064.  Google Scholar

[7]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control,, Birkhäuser, (2004).   Google Scholar

[8]

P. Cannarsa and Y. Yu, Singular dynamics for semiconcave functions,, J. Eur. Math. Soc. (JEMS), 11 (2009), 999.  doi: 10.4171/JEMS/173.  Google Scholar

[9]

M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 277 (1983), 1.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[10]

M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 282 (1984), 487.  doi: 10.1090/S0002-9947-1984-0732102-X.  Google Scholar

[11]

C. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation laws,, Indiana Univ. Math. J., 26 (1977), 1097.  doi: 10.1512/iumj.1977.26.26088.  Google Scholar

[12]

A. Douglis, The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data,, Comm. Pure Appl. Math., 14 (1961), 267.  doi: 10.1002/cpa.3160140307.  Google Scholar

[13]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Springer Verlag, (1993).   Google Scholar

[14]

S. N. Kruzhkov, Generalized solutions of the Hamilton-Jacobi equations of the eikonal type I,, Math. USSR Sb., 27 (1975), 406.   Google Scholar

[15]

N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order. Translated from the Russian by P. L. Buzytsky,, Mathematics and its Applications (Soviet Series), (1987).  doi: 10.1007/978-94-010-9557-0.  Google Scholar

[16]

P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations,, Pitman, (1982).   Google Scholar

[17]

T. Strömberg, Propagation of singularities along broken characteristics,, Nonlinear Anal., 85 (2013), 93.  doi: 10.1016/j.na.2013.02.024.  Google Scholar

[18]

T. Strömberg and F. Ahmadzadeh, Excess action and broken characteristics for Hamilton-Jacobi equations,, Nonlinear Anal., 110 (2014), 113.  doi: 10.1016/j.na.2014.08.001.  Google Scholar

[19]

C. Villani, Optimal Transport, Old and New,, Springer, (2009).  doi: 10.1007/978-3-540-71050-9.  Google Scholar

[20]

Y. Yu, A simple proof of the propagation of singularities for solutions of Hamilton-Jacobi equations,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2006), 439.   Google Scholar

show all references

References:
[1]

P. Albano, Propagation of singularities for solutions of Hamilton-Jacobi equations,, J. Math. Anal. Appl., 411 (2014), 684.  doi: 10.1016/j.jmaa.2013.10.015.  Google Scholar

[2]

P. Albano and P. Cannarsa, Propagation of singularities for concave solutions of Hamilton-Jacobi equations,, in EQUADIFF 99 Proceedings of the International Conference on Differential Equations (eds. D. Fiedler, (2000), 583.   Google Scholar

[3]

P. Albano and P. Cannarsa, Propagation of singularities for solutions of nonlinear first order partial differential equations,, Arch. Ration. Mech. Anal., 162 (2002), 1.  doi: 10.1007/s002050100176.  Google Scholar

[4]

P. Albano, P. Cannarsa, K. T. Nguyen and C. Sinestrari, Singular gradient flow of the distance fundtion and homotopy equivalence,, Math. Ann., 356 (2013), 23.  doi: 10.1007/s00208-012-0835-8.  Google Scholar

[5]

M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi Equations,, Birkhäuser, (1997).  doi: 10.1007/978-0-8176-4755-1.  Google Scholar

[6]

P. Cannarsa, A. Mennucci and C. Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi equations,, Arch. Rational Mech. Anal., 140 (1997), 197.  doi: 10.1007/s002050050064.  Google Scholar

[7]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control,, Birkhäuser, (2004).   Google Scholar

[8]

P. Cannarsa and Y. Yu, Singular dynamics for semiconcave functions,, J. Eur. Math. Soc. (JEMS), 11 (2009), 999.  doi: 10.4171/JEMS/173.  Google Scholar

[9]

M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 277 (1983), 1.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[10]

M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 282 (1984), 487.  doi: 10.1090/S0002-9947-1984-0732102-X.  Google Scholar

[11]

C. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation laws,, Indiana Univ. Math. J., 26 (1977), 1097.  doi: 10.1512/iumj.1977.26.26088.  Google Scholar

[12]

A. Douglis, The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data,, Comm. Pure Appl. Math., 14 (1961), 267.  doi: 10.1002/cpa.3160140307.  Google Scholar

[13]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Springer Verlag, (1993).   Google Scholar

[14]

S. N. Kruzhkov, Generalized solutions of the Hamilton-Jacobi equations of the eikonal type I,, Math. USSR Sb., 27 (1975), 406.   Google Scholar

[15]

N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order. Translated from the Russian by P. L. Buzytsky,, Mathematics and its Applications (Soviet Series), (1987).  doi: 10.1007/978-94-010-9557-0.  Google Scholar

[16]

P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations,, Pitman, (1982).   Google Scholar

[17]

T. Strömberg, Propagation of singularities along broken characteristics,, Nonlinear Anal., 85 (2013), 93.  doi: 10.1016/j.na.2013.02.024.  Google Scholar

[18]

T. Strömberg and F. Ahmadzadeh, Excess action and broken characteristics for Hamilton-Jacobi equations,, Nonlinear Anal., 110 (2014), 113.  doi: 10.1016/j.na.2014.08.001.  Google Scholar

[19]

C. Villani, Optimal Transport, Old and New,, Springer, (2009).  doi: 10.1007/978-3-540-71050-9.  Google Scholar

[20]

Y. Yu, A simple proof of the propagation of singularities for solutions of Hamilton-Jacobi equations,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2006), 439.   Google Scholar

[1]

Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic & Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255

[2]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[3]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[4]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[5]

Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223

[6]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[7]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : ⅰ-ⅲ. doi: 10.3934/dcdss.201805i

[8]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[9]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[10]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[11]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[12]

Antonio Avantaggiati, Paola Loreti, Cristina Pocci. Mixed norms, functional Inequalities, and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1855-1867. doi: 10.3934/dcdsb.2014.19.1855

[13]

Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167

[14]

Martino Bardi, Yoshikazu Giga. Right accessibility of semicontinuous initial data for Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2003, 2 (4) : 447-459. doi: 10.3934/cpaa.2003.2.447

[15]

David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205

[16]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[17]

Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793

[18]

Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649

[19]

Qing Liu, Atsushi Nakayasu. Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 157-183. doi: 10.3934/dcds.2019007

[20]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

[Back to Top]